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1  |  BACKGROUND

Recently, there has been growing adoption of the view that dyslexia, 
a reading disability, is probabilistic in nature; children with a family 
history of dyslexia are considered “at-risk”, and compensatory skills 
such as strong oral language or executive functions may be “protec-
tive factors” (Haft et al., 2016; Hulme et al., 2015; Muter & Snowling, 
2009; Pennington, 2006). In this multifactorial framework, most 
cases of dyslexia cannot be explained by a single cognitive deficit. 

Despite this heterogeneity, it is broadly accepted that phonologi-
cal awareness (PA) and rapid automatized naming (RAN) are two 
of the strongest—if imperfect—predictors of reading development 
(Pennington et al., 2012; Wolf & Bowers, 2000).

In parallel, there is a broad literature characterizing dyslexia as 
the consequence of a fundamental deficit that supersedes phono-
logical processing. There are many reports indicating that people 
with dyslexia perform poorly in experiments targeting various as-
pects of visual (Stuart et al., 2006; Talcott et al., 2002) and auditory 
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Abstract
Competing theories of dyslexia posit that reading difficulties arise from impaired 
visual, auditory, phonological, or statistical learning mechanisms. Importantly, many 
theories posit that dyslexia reflects a cascade of impairments emanating from a single 
“core deficit”. Here we report two studies evaluating core deficit and multifactorial 
models. In Study 1, we use publicly available data from the Healthy Brain Network to 
test the accuracy of phonological processing measures for predicting dyslexia diag-
nosis and find that over 30% of cases are misclassified (sensitivity = 66.7%; specific-
ity	=	68.2%).	 In	Study	2,	we	collect	a	battery	of	psychophysical	measures	of	visual	
motion processing and standardized measures of phonological processing in 106 
school-aged children to investigate whether dyslexia is best conceptualized under a 
core-deficit model, or as a disorder with heterogenous origins. Specifically, by capi-
talizing on the drift diffusion model to analyze performance on a visual motion dis-
crimination experiment, we show that deficits in visual motion processing, perceptual 
decision-making, and phonological processing manifest largely independently. Based 
on statistical models of how variance in reading skill is parceled across measures of 
visual processing, phonological processing, and decision-making, our results chal-
lenge the notion that a unifying deficit characterizes dyslexia. Instead, these findings 
indicate a model where reading skill is explained by several distinct, additive predic-
tors, or risk factors, of reading (dis)ability.
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processing (Hämäläinen et al., 2013; Noordenbos & Serniclaes, 
2015), as well domain general mechanisms such as processing speed 
and statistical learning (Gabay et al., 2015; Vandermosten et al., 
2018).	These	findings	have	spurred	competing	theories	that	explain	
dyslexia as the consequence of cascading effects from a fundamen-
tal deficit in the neural systems that process sensory information (ei-
ther visual, auditory, or both; Goswami, 2015), or the ability to make 
optimal use of sensory information (e.g., Ahissar, 2007; Ramus & 
Ahissar, 2012). Sensory systems are organized in a hierarchy and the 
information that is encoded by the eyes and ears is processed in a 
sequence of stages in the brain. Generally, these “cascading deficit” 
theories contend that deficits in one of the early stages of sensory 
processing disrupt the development of phonological processing and, 
by this mechanism, disrupt reading development.

Notably, these two branches of research remain largely distinct; 
while multifactorial models of reading disability are increasingly 
accepted among researchers studying high-level cognitive and lin-
guistic functions, these models largely ignore lower level deficits 
in sensory processing. In the sensory-processing literature, on the 
other hand, cascading deficit models continue to dominate and 
appeals to a “core mechanism” of dyslexia are still commonplace. 
Indeed, a PubMed search for the phrase “core deficit of dyslexia” 
turns	up	118	results	 from	1986	to	 the	present.	Presently,	hypoth-
eses positing a core deficit with cascading effects are the focus of 
many neuroscientific and psychophysical studies of reading disabil-
ity	(Casini	et	al.,	2018;	Colling	et	al.,	2017;	Frey,	François,	Chobert,	
Besson,	et	al.,	2019;	Frey,	François,	Chobert,	Velay,	et	al.,	2019;	Gori	
et al., 2016; Krause, 2015; Lieder et al., 2019; Nicolson & Fawcett, 
2018;	Vidyasagar,	2019).

A core deficit model is inherently at odds with a multifactorial 
model; to accept both models implies that a deficit is not really “core” 
in the majority of individuals with dyslexia. Reconciling the many dis-
parate theories of reading disability remains a formidable challenge. 
To further compound the difficulty, there are several variants of the 
cascading deficit theory—one is the magnocellular deficit theory 
of dyslexia, in which a low-level impairment in the motion-sensi-
tive magnocellular pathway of the visual system is said to disrupt 
reading skill development (Stein, 2001, 2019; Stein & Walsh, 1997). 
Proponents of this theory have argued that sensitivity to transient 
sensory information may not be restricted to vision, but could also 
affect auditory processing (Stein & Talcott, 1999; Van Ingelghem 
et	al.,	2001;	Witton	et	al.,	1998).	Hypothetically,	 auditory	 insensi-
tivity to rapid cues could diminish an individual's ability to learn the 
sounds of their language, and hence develop PA.

Distinct from these sensory processing theories, proponents 
of the statistical-learning hypothesis argue that a domain-general 
deficit in sensory learning and perceptual decision-making more 
broadly could explain why people with dyslexia perform poorly on 
myriad psychophysical tasks (Ahissar, 2007; Nicolson & Fawcett, 
2018;	Ziegler,	2008).	It	also	purports	to	explain	why	some	children	
struggle to learn the mapping between letters and sounds; if sensory 
information cannot be effectively used, then acquiring sensitivity to 
the regularities of language may be challenging. Despite interest in 

cognitive deficits at the level of abstracting sensory information, an 
exact mechanism is not agreed on; variants include an inability to 
appropriately adjust sensory decision-making criteria (Lieder et al., 
2019) and abnormal neural dynamics (Jaffe-Dax et al., 2017; Krause, 
2015; Perrachione et al., 2016). Despite differences in the details, 
what is consistent across these “non-sensory” theories is that they 
posit that a more general deficit disrupts both (1) performance on 
experiments requiring a subjects to make a decision based on sen-
sory information and (2) the development of reading skills.

Today, the literature remains inconclusive for several reasons. 
First, various cascading deficit models contradict one another as 
each posits distinct mechanisms for disrupting phonological pro-
cessing. While a statistical learning model could potentially explain 
why so many struggling readers also perform poorly on visual psy-
chophysics, it has not been established whether these two types 
of deficits co-occur in the same individuals. The widespread use of 
group-level statistics makes it challenging to interpret how many 
individuals show a given pattern of low-level deficits, and the few 
studies focusing on individual patterns across a battery of diverse 
tasks do not encourage much hope for a uniform profile (Amitay 
et al., 2002; Ho et al., 2002; Menghini et al., 2010; Ramus et al., 
2003; White et al., 2006).

Perhaps more importantly, it remains challenging to understand 
what relationship predictors from psychophysical tasks have with 
phonological predictors in determining reading ability—in other 
words, whether the influence of low-level sensory processing 
mechanisms on reading skill is mediated by phonological process-
ing. Talcott, Witton, et al. (2000) may have best addressed this by 
administering a battery of auditory, visual, and phonological tasks, 
concluding that a measure of visual motion processing explained 
some additional variance in reading skill beyond a measure of PA. 
A follow-up study replicated the finding that visual and auditory 
psychophysics explained unique variance in both phonological and 
literacy skills but did not clarify the fit of a cascading model (Talcott 
et al., 2002). Several others have observed evidence that auditory 
and visual processing measures influence reading skill separate from 
the proposed phonological pathway (Snowling et al., 2019; Stein, 
2001; White et al., 2006). Despite these findings, cascading deficit 

Research Highlights

• New evidence that a single-mechanism model of dys-
lexia cannot account for the range of linguistic and sen-
sory processing outcomes in children.

• Contrary to many previous hypotheses, our data sug-
gest that predictors from visual motion processing ex-
periments can influence reading skill independently of 
phonological processing.

• We propose an additive risk factor model where differ-
ent aspects of sensory, cognitive, and language function 
each contribute independently to reading development.
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models remain at the forefront of the dyslexia debate, particularly 
for theories that hold a central role for sensory processing deficits 
(reviewed in Goswami, 2015).

There are several reasons why studies such as Talcott et al.’s are 
well-cited, but not broadly adopted as conclusive evidence about 
sensory processing in dyslexia. In the last two decades, there has 
been growing focus on non-sensory mechanisms that may affect 
how struggling readers perform on psychophysical tasks—a con-
found that many studies may not have sufficiently accounted for 
(Banai & Ahissar, 2004, 2006; Ramus & Ahissar, 2012). Furthermore, 
in the multifactorial literature, it is increasingly accepted that at 
least two dissociable aspects of phonological processing (PA and 
RAN) contribute to reading skill (Pennington et al., 2012; Wolf & 
Bowers, 1999, 2000). Previous work only explores the relationship 
of sensory measures to a single dimension of PA (Bosse et al., 2007; 
Talcott,	 Hansen,	 et	 al.,	 2000;	 Talcott	 et	 al.,	 2002;	 Zoubrinetzky	
et al., 2014). As evidence mounts that PA alone is unlikely to explain 
many	 (Snowling,	2008;	Snowling	&	Melby-Lervåg,	2016),	or	even	
most (Pennington et al., 2012) cases of dyslexia, it remains worth 
considering how individual differences in visual motion processing, 
or perceptual decision-making more generally, will fit into changing 
conceptions of reading disability.

To separate the contributions of sensory encoding of visual mo-
tion from non-sensory aspects of the decision-making process, we 
revisit a widely used measure of visual motion sensitivity (random 
dot motion discrimination) with a mathematical modeling approach. 
The drift diffusion model (DDM) estimates the generating func-
tion that corresponds to an individual's pattern of responses and 
reaction	 times	on	a	 task	 (Ratcliff	&	McKoon,	2008),	 and	has	been	
used to understand how cognitive mechanisms associated with 
aging (Ratcliff, Thapar, et al., 2004), Attention Deficit Hyperactivity 
Disorder (ADHD) (Huang-Pollock et al., 2017), and development 
(Ratcliff et al., 2012) manifest in psychophysical task performance. 
The model has been extensively used to describe decision-making 
on the motion discrimination task (Gold & Shadlen, 2007; Palmer 
et al., 2005; Shadlen et al., 2013), and validated by electrophysio-
logical work in non-human primates (Shadlen & Newsome, 2001). As 
such, the DDM provides a rigorous way to explore the intersection 
of sensory integration and decision-making in relation to reading 
skill. To date, this model has only been used to study reading disabil-
ity in two studies of lexical decision-making (Ratcliff, McKoon, et al., 
2004;	Zeguers	et	al.,	2011).

Here we present two studies testing core-deficit and multifac-
torial models of dyslexia; in Study 1, we asked how well measures 
of phonological processing (PA and RAN) can account for diagnoses 
of reading disability. For maximal statistical power, and to ensure 
consistency in diagnostic criteria, we utilize a large public dataset 
of hundreds of school-aged children who have been undergone a 
standardized assessment by a panel of clinicians. In a core-deficit 
model of dyslexia with a central phonological component, we would 
hypothesize that most children would be well-classified according 
to standard phonological processing measures. Alternatively, the 
extent to which dyslexia occurs in children with high scores on 

phonological measures indicates that additional, unmeasured factors 
are important for understanding those children's reading difficulties.

In Study 2, we explore relationships between measures of pho-
nological processing (PA and RAN), visual motion processing and 
perceptual decision-making, estimated with the DDM (N = 106 
school-age children tested in our lab). With this dataset, we first in-
vestigate patterns of correlations between visual processing, cog-
nitive and reading measures, and then test the hypothesis that a 
multifactorial model, in which both phonological and visual process-
ing factors contribute independently to reading skill, outperforms 
any of the core-deficit models.

2  |  METHODS: STUDY 1

2.1  |  Participants

The Healthy Brain Network dataset is provided to the public by 
the Child Mind Institute. At the time of writing, the released data-
set	 included	 1814	 subjects.	 From	 this	 dataset,	 we	 identified	 124	
school-aged individuals (ages 5–17) in the urban New York City 
region who had been diagnosed with “Specific Learning Disorder 
with Impairment in Reading” by a panel of clinicians affiliated with 
the Child Mind Institute and also had standardized scores on the 
Comprehensive Test of Phonological Processing (CTOPP-2; Mitchell, 
2001) available. The diagnoses were made according to the 5th edi-
tion of the Diagnostic and Statistical Manual for Mental Disorders 
(though specific criteria are not provided; American Psychiatric 
Association, 2013).

We also identified 119 individuals who were similarly assessed 
and given no diagnosis of any kind. Due to the large number of par-
ticipants available, we were able to create nonverbal IQ matched 
control groups on the basis of the Wechsler Intelligence Scale for 
Children's Matrix Reasoning scaled score (Dyslexia: n = 110; Control: 
n = 105). These groups did not significantly differ in terms of non-
verbal IQ (t(208.85)	=	−1.0668,	p = 0.287)	or	age	(t(212.65 = 1.041, 
p = 0.299). The Healthy Brain Network dataset can be accessed here: 
http://fcon_1000.proje cts.nitrc.org/indi/cmi_healt hy_brain_netwo 
rk/index.html

2.2  |  Measures

We analyzed two standardized measures administered to all children 
in the Control and Dyslexia groups: the CTOPP-2’s Elision subtest 
and the RAN Composite score. These age-normed measures give an 
estimate of PA and RAN respectively.

2.3  |  Analysis

To assess the separability of the Control and Dyslexia groups on the 
basis of two measures of phonological processing, we used quadratic 

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/index.html
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/index.html
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discriminant analysis (QDA). Using the QDA function from the MASS 
library for R, we fit a model with group as the dependent variable 
and PA and RAN as independent variables. To avoid overfitting, we 
report results from leave-one-out cross validation.

3  |  RESULTS:  STUDY 1

3.1  |  Predicting dyslexia from phonological 
measures

We first assessed the phonological core deficit model by quantifying 
the extent to which deficits in PA, RAN, or both differentiate indi-
viduals with dyslexia from control subjects with typical reading skills 
(Figure 1). A classifier trained with leave-one-out cross validation on 
both features could correctly classify 67.4% (±6.3%; 95% confidence 
interval)	of	individuals	with	a	specificity	of	68.2%	and	a	sensitivity	
of 66.7%. To be certain that this does not reflect the limitations of 
a specific classifier model (QDA), we also assessed a support vector 
machine model and found no improvement in classification accuracy.

The classifier results are undoubtedly in alignment with the ex-
tensive literature on phonological processing; PA and RAN are both 
meaningful predictors of reading skill. As is clear in Figure 1a,b, there 
are pronounced group-level differences on both measures; dyslexic 
and control groups differ by nearly a standard deviation on both PA 
and RAN measures. A dis-attenuated estimate of Cohen's d, account-
ing for the published test–retest reliability of each measure, was 1.00 
for PA (unadjusted d	=	0.93)	and	0.87	for	RAN	(unadjusted	d	=	0.81).	
Yet, these two measures alone fail to account for many cases of dys-
lexia—in the Healthy Brain Network (HBN) sample, 33 out of 110 

cases (Figure 1c). For either measure, there would be approximately 
50% overlap between Control and Dyslexic groups even when ac-
counting for measurement reliability, and many individuals with ap-
parently typical reading abilities would be erroneously predicted to 
be dyslexic based on their PA and RAN scores alone (low specificity).

In the original formulation of the phonological core deficit model 
(e.g.,	Stanovich,	1988),	PA	is	purported	to	be	a	more	powerful	pre-
dictor of reading disability in early childhood, so it may be unsurpris-
ing that the model's accuracy is not higher in a sample containing 
teenagers. We therefore repeated the analysis on two subsets of the 
sample:	62	children	between	ages	5	and	8	(n = 29 with a Dyslexia 
diagnosis),	and	153	children	aged	8–17	 (n	=	81	with	a	Dyslexia	di-
agnosis). The classifier trained on the younger cohort obtained an 
accuracy of 69.4% (±11.7%) while the classifier trained on the older 
cohort reached 66.7% (±7.5%). We ran a second analysis treating age 
as a continuous predictor and we used logistic regression on our en-
tire sample to model dyslexia diagnosis (present or absent) with main 
effects of age, PA, and the interaction of the two. The interaction 
term was not significant (β	=	−0.007,	SE	=	0.0243,	p = 0.767), indicat-
ing that the predictive value of PA and RAN was roughly consistent 
across the sampled age range.

Finally, we tested a direct measure of pseudoword reading skill 
provided in the HBN dataset (the age-normed Weschler Individual 
Achievement Test Pseudoword subtest) as the dependent variable 
in a linear model. The interaction of age and PA was again not signifi-
cant (β	=	−0.0322,	SE	=	0.116,	p	=	0.782).	Similarly,	the	interaction	of	
age and RAN was not significant (β	=	−0.0357,	SE	=	0.019,	p = 0.070). 
As such, our finding that standard phonological measures are mod-
est, yet imperfect, predictors of dyslexia in the HBN dataset is un-
likely to be an artifact of the age range of the sample.

F I G U R E  1 (a,b)	Density	plots	for	phonological	awareness	(Comprehensive	Test	of	Phonological	Processing	[CTOPP]	Elision)	and	rapid	
automatized naming (CTOPP Rapid Symbolic Naming Composite) in the Healthy Brain Network dataset in two subsets. The Dyslexia group 
(blue) consists of 110 school-aged children diagnosed with dyslexia by a panel of clinicians. The red density plot represents an age- and 
nonverbal IQ-matched control group of 105 children identified as having no psychiatric or neurological diagnoses by the same panel. (c) The 
decision boundary of a quadratic discriminant analysis trained on the entire dataset is shown. Dots represent observations from the dataset 
with slight jitter added for visibility of overlapping points
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4  |  STUDY 2

Having demonstrated that phonological predictors alone are insuf-
ficient to accurately distinguish many cases of dyslexia from typical 
reading (Study 1, HBN data), we next consider the contribution of 
visual motion processing to reading abilities. Do visual motion pro-
cessing difficulties typically coincide with phonological impairments, 
as would be expected in a cascading model of reading disability? Or 
are they a separable contributor to reading outcomes which explain 
cases of dyslexia that were not captured by the phonological core 
deficit model? Here we present the results of the motion discrimina-
tion experiment (conducted in the lab) in 106 school-aged children, 
including 42 individuals who meet our criteria for dyslexia.

4.1  |  Methods

4.1.1  |  Participants

A total of 119 native English-speaking school-aged children aged 
8–12	were	 recruited.	Children	without	histories	of	neurological	or	
sensory disorders were recruited from a database of volunteers 
in the Seattle area (University of Washington Reading & Dyslexia 
Research Database; http://Readi ngAnd Dysle xia.com). Parents and/
or legal guardians of all participants provided written informed 
consent under a protocol that was approved by the University of 
Washington Institutional Review Board. All subjects demonstrated 
normal or corrected-to-normal vision.

Five subjects did not complete the psychophysics. An additional 
two subjects did not show evidence of performing above chance 
(>60.5% accuracy at any of the four stimulus coherence levels) and 
were excluded from analysis. A further six subjects did not produce 
enough usable data to fit the DDM (no more than 15% responses 
outside of the acceptable response time window from 200 ms to 
10 s). This left 106 subjects with usable data. The average age of 
these participants was 9.9 years (SD = 1.3).

4.1.2  |  Measures of literacy and cognitive skills

Several standardized measures were used to assess foundational 
literary and cognitive skills in our participants. All participants com-
pleted the subtests of the Woodcock–Johnson IV (Schrank et al., 
2014) required to estimate the Basic Reading Score (WJ-BRS), Letter 
Word Identification, and Word Attack. To obtain the test of word 
reading efficiency (TOWRE) Index, participants completed the Sight 
Word Efficiency and Phonemic Decoding Efficiency subtests of the 
TOWRE-2 (Torgesen et al., 2011). Phonological processing was as-
sessed with the CTOPP-2 (Mitchell, 2001). A PA score was obtained 
as a composite of the Elision, Blending Words, and Sound Matching 
subtests. A RAN score was obtained as a composite of the Rapid 
Digit Naming and Rapid Letter Naming subtests. Additionally, a 
Phonological Memory composite score was obtained as a composite 

of the Memory for Digits and Nonword Repetition tasks. Lastly, all par-
ticipants completed the Weschler Abbreviated Scale of Intelligence-II 
(Wechsler, 2011) Vocabulary and Matrix Reasoning subtests. A com-
posite of these two scores yielded the Full Scale-2 composite. The 
Matrix Reasoning score was used as a measure of nonverbal IQ in the 
following analyses.

4.1.3  |  Definition of dyslexia and control groups

We recruited participants whose reading abilities ranged from pro-
foundly impaired to highly proficient. Since reading abilities fall on a 
continuum (Shaywitz et al., 1992), and because we could not ensure 
that children in our area with parental reports of a diagnosis were di-
agnosed in a standardized way, we treat reading ability as a continuous 
measure in our main statistical analyses. For the purpose of comparison 
with other studies, we also include group-level analyses (Dyslexic vs. 
Control). For sake of brevity, the complete group analysis is described 
in Supplementary Materials and we refer to key findings from this com-
plimentary analysis in the main text where appropriate. Group labels 
were assigned on the basis of the composite WJ-BRS and TOWRE 
Index. As both the WJ-BRS and TOWRE Index are scored on the same 
standardized scale, a composite reading skill measure was created by 
averaging the two scores for each participant. The average reading 
score overall was 92.0 (SD = 19); note that this was significantly lower 
than the expected population mean of 100 (t(105)	=	−4.31,	p < 0.001), 
indicating that poor readers were oversampled in our recruitment. The 
“Dyslexic” group comprised participants whose reading score fell 1 SD 
or	more	below	the	population	mean	(reading	score	<85);	the	“Control”	
group had reading scores above this cutoff and had never been diag-
nosed with a reading disability. There were 43 subjects in the Dyslexic 
group	and	48	in	the	Control	group.	A	remaining	15	subjects	were	not	
well-described	by	either	 label	 (e.g.,	 reading	score	>85	but	an	 indica-
tion of a dyslexia diagnosis) so were not included in the group compari-
sons.	As	in	several	other	studies	(O’Brien	et	al.,	2018;	Pennington	et	al.,	
2012), we did not IQ-match these groups, but rather controlled for 
nonverbal IQ explicitly in our statistical analyses. Additionally, ADHD 
diagnosis was not grounds for study exclusion because of the high co-
morbidity between ADHD and dyslexia. The presence of ADHD was 
entered into our linear modeling analyses as a covariate. Relationships 
between demographic characteristics, phonological, IQ measures, and 
reading skill are presented in Tables S1 and S2.

4.1.4  |  Psychophysics stimuli and apparatus

Participants were tested with a motion discrimination paradigm, a 
single-interval task in which participants are asked to label the over-
all direction of motion (left or right) for a patch of random-dot motion 
stimuli generated with varying coherence levels. When coherence is 
at 0%, participants perform at chance levels, as there is effectively 
no signal. Also, as the coherence is increased, so too increases the 
salience of perceived motion to the left or right. For further details 

http://ReadingAndDyslexia.com
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of the stimuli and testing apparatus, please see Supplementary 
Methods.

4.1.5  |  Psychophysics procedure

Each session comprised six experimental blocks. For each sub-
ject, three blocks of 50 stimuli were tested with a brief break in 
between. This was followed by a longer break to collect reading, 
phonological and IQ measures, and followed by the final set of 
three blocks. At the beginning of the session, subjects completed 
10 practice trials comprising high coherence motion (60%–100%). 
Subjects were allowed to repeat the practice up to three times, 
until they got at least 70% correct. All participants were able to 
do this.

Stimuli were presented at five coherence levels: 6%, 12%, 
24%,	48%,	and	100%.	However,	early	in	the	study	we	realized	that	
many subjects (unrelated to reading ability) found 100% coher-
ence difficult and reported varying visual percepts. Performance 
typically	declined	for	100%	coherence	stimuli	compared	to	48%	
coherence. Therefore, we analyzed only the range of stimulus co-
herence levels where performance was generally monotonic, from 
6%	to	48%.	Each	stimulus	coherence	level	was	presented	60	times	
for a total of 300 presentations, 240 of which were included in 
the analysis.

Each trial started with a fixation mark at the center of the 
display. After 500 ms, random-dot motion stimuli were displayed 
until the subject made a keypress (or until 10 s had elapsed). 
Subjects pressed right or left arrow keys on a standard keyboard 
to report motion direction. The fixation mark was turned off when 
the response was made, and visual and auditory feedback was 
given to indicate correct and incorrect responses. The experiment 
did not proceed until subjects reported the motion direction. The 
inter-trial interval was 1 s, and after this interval the fixation mark 
re-appeared at the center of the display to indicate the beginning 
of the next trial.

4.1.6  |  Drift diffusion model

To decouple sensory encoding of visual motion from the process 
of forming and executing a binary decision, we fit the DDM to 
each subject's distribution of behavioral responses and reaction 
times. In the DDM for a two-alternative forced-choice judgment, it 
is assumed that an observer samples sensory input at discrete mo-
ments in time, and that these samples are accumulated in a noisy 
decision variable that represents the integrated evidence over the 
course of the trial (plus internal noise). When this decision vari-
able reaches a threshold, the observer initiates a decision. The 
DDM therefore separates the encoding and evaluation of sensory 
information (which drives changes in the decision variable) from 
non-sensory processes, such as the magnitude of the threshold for 
triggering a decision and the trial-to-trial variability in the decision 

process (for a detailed review of the DDM, see Ratcliff & McKoon, 
2008;	Wiecki	et	al.,	2013).

For further details of the DDM implementation, outlier detec-
tion, and modeling procedure for testing hypotheses around DDM 
parameters, see Supplementary Methods.

4.2  |  Results: Study 2

4.2.1  |  Visual motion processing and 
reading abilities

Before we model the respective contributions of sensory and de-
cision processes to task performance, it is important to establish 
that task performance is related to reading skill. We confirmed that 
reading skill was related to reaction time; using model selection, 
we identified that the most parsimonious model of median reac-
tion time included main effects of stimulus coherence (β	=	−0.173,	
SE	 =	 0.00898,	 p < 1 × 10−15), age (β	 =	 −0.059,	 SE	 =	 0.0214,	
p < 1 × 10−15), and reading skill (β	 =	 −0.006,	 SE	 =	 0.00149,	
p = 1.15 × 10−4) with a random effect of subject (Table S4; Figure 
S1). Accuracy was not significantly related to reading skill (Table 
S5), likely reflecting the fact that the motion stimuli remained on 
the screen until the subject provided a response. Notably, we also 
observed that the ratio of correct to error median response times 
within each subject was significantly associated with reading skill 
(β	=	−0.00444,	SE	=	0.00224,	p = 0.0497), with poor readers show-
ing an increased tendency to make “fast errors” relative to correct 
response times (Table S6; Figure S2). The presence of fast errors is 
notable because this phenomenon is typically associated with non-
sensory mechanisms, including a tendency to initiate guesses be-
fore an optimal amount of evidence is considered (Smith & Ratcliff, 
2004). Thus, raw reaction time data indicated that children with low 
reading scores were not only less efficient than control subjects in 
processing visual motion, but also showed a qualitatively different 
pattern of responses.

4.2.2  |  Less efficient visual motion processing in 
children with low reading scores

After fitting the DDM to each subject's behavioral responses, we 
investigated whether there was a relationship between the drift rate 
parameter, v, and reading skill. Drift rate models the efficiency with 
which information is extracted and integrated from incoming sen-
sory signals. For example, drift rate monotonically increases with 
stimulus coherence level (β = 0.719, SE = 0.0249, p < 1 × 10−15) indi-
cating the visual system can more efficiently extract motion infor-
mation when stimulus noise is low. If individuals with dyslexia do not 
have any difficulties with encoding visual information, as predicted 
by the statistical learning hypothesis, we would expect drift rate to 
be uncorrelated with reading skill once covariates like IQ, age, and 
ADHD diagnosis are controlled for. Note that in our analyses, we 
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treat reading as a continuous measure, but we also provide analy-
ses where reading disability is treated as a categorical variable in 
Supplementary Analysis 1 (Tables S7–S9). Details of the model selec-
tion procedure are provided in the Methods.

Individual estimates of drift rate are shown in Figure 2. Drift 
rate was best modeled by a main effect of reading skill, a main ef-
fect of stimulus coherence, a main effect of age, and the interac-
tion of reading skill and stimulus coherence (Table 1). Our results 
therefore indicate that drift rate increases with stimulus coherence, 
as expected, as well as age and reading skill. Furthermore, there is 
a stronger relationship between reading skill and drift rate at high 
stimulus coherence levels, which is likely a consequence of the fact 
that estimates of drift rate are more reliable at higher coherence lev-
els (see Methods).

To estimate the effect size of the relationship between reading 
skill and drift rate, we considered a linear model of reading skill as 
a function of participant's average drift rate; the selected model of 
reading skill contained main effects of mean drift rate (β	=	−0.262,	
SE = 0.009, p = 0.006) and nonverbal IQ (β	=	−0.488,	SE	=	0.008,	
p = 5.20 × 10−8). In this model, the partial r2 associated with mean 
drift rate was 0.074; thus the unique contribution of this index of vi-
sual motion processing to explaining variance in reading skill is likely 

modest. Similarly, with reading skill treated as a group-level vari-
able, Cohen's d was 0.42. As such, our data do not provide evidence 
that deficits in motion processing occur in most struggling readers, 
though there is a significant relationship between motion processing 
and reading ability.

As to the question of whether drift rate explains additional 
variance in reading skill beyond phonological processing, con-
sider the subset of readers in our sample with above average PA 
(PA	scores	≥100).	Within	this	subgroup	of	38	participants,	9	chil-
dren (23.7%) met our criteria for dyslexia despite having high PA, 
and reading skill was significantly correlated with mean drift rate 
(r = 0.49, p = 0.0019; see Figure 3). The relationship between read-
ing skill and mean drift rate in the high PA subgroup remained sig-
nificant when controlling for RAN and nonverbal IQ (β	=	−0.164,	
SE = 0.072, p = 0.0279). For these individuals, knowing drift rate 
explains 24% of variance in reading skill. In readers with aver-
age-or-better PA, it appears that individual differences in visual 
motion processing distinguish between struggling and expert 
readers. Interestingly, a different pattern emerged in a subgroup 
of	28	subjects	with	RAN	scores	≥100:	for	these	participants,	the	
correlation between reading skill and drift rate was not significant 
(r = 0.03, p = 0.320).

F I G U R E  2 (a)	A	schematic	of	the	drift	diffusion	model	(DDM)	with	reaction	time	distributions	(at	12%	coherence)	from	the	control	
and dyslexic groups imposed above. The red and blue lines in the schematic show how differences in drift rater predict differences in the 
reaction time distributions. The DDM model was fit separately to each individual's data and the average drift rate parameter for the dyslexic 
and control groups is shown in the bar plot in panel a (±1 SE). (b) The relationship between estimated drift rate and reading skill at four 
different stimulus coherence levels. Lines are best fit regression lines and shaded regions are confidence intervals
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4.2.3  |  Decision-making parameters are related to 
reading skill and independent of visual processing

We next consider the predictions of non-sensory hypotheses by an-
alyzing the relationship between parameters of the DDM that index 
non-sensory components of the decision-making process and read-
ing skill (Figure 4a–d). For each parameter of interest, we modeled 
reading skill as a function of the parameter plus the covariates and 
report the results of model selection. If poor readers struggled with 
the task only because of differences in visual processing, we would 
expect no parameters besides drift rate (and sv) to be useful predic-
tors of reading skill.

To the contrary, the parameter sz was significantly correlated 
with reading skill and, after model selection, was retained as a pre-
dictor (Figure 4a). The selected model contained main effects of 
sz (β	=	−0.798,	SE	=	0.281,	p = 0.005) and nonverbal IQ (β	=	0.483,	
SE	 =	 0.083,	 p = 7.05 × 10−8). The parameter sz represents the 

trial-to-trial variability in the relative amount of evidence required 
to initiate a judgment; individuals with high sz values are prone to 
making fast errors. Indeed, we confirmed that the ratio of median 
correct response times to error response times within a subject was 
correlated with the DDM estimation of sz (r = 0.452, p = 1.44 × 10−6).

Similarly, we observed that the parameter representing the 
threshold of evidence required to initiate a decision, a, had a modest 
but significant correlation with reading skill (β	=	−0.136,	SE	=	0.0632,	
p = 0.0329), indicating that worse reading skill is associated with 
employing a more conservative criterion for initiating a perceptual 
decision (Figure 4b). After model selection, a and nonverbal IQ 
were retained as selectors of reading skill (β	=	−0.237,	SE	=	0.130,	
p = 0.072; β	=	0.490,	SE	=	0.085,	p = 8.79	×	10−8).

Lastly, we examined parameters that represent the lumped con-
tributions of all non-decision processes to reaction time, including 
the time necessary to encode a visual stimulus and execute a motor 
response. Because some individuals with dyslexia are known to 
have slower processing speed (Pennington et al., 2012; Peterson & 
Pennington, 2015), we might expect this time to be longer in chil-
dren with worse reading skills. Indeed, the parameter t representing 
an individual's average non-decision time showed an overall nega-
tive relationship with reading skill; model selection retained both t 
(β	=	−1.031,	SE	=	0.489,	p = 0.0375) and nonverbal IQ (β	=	0.518,	
SE	 =	 0.841,	 p = 1.50 × 10−8; Figure 4c). We also tested a model 
of reading skill as a function of a parameter modeling trial-to-trial 
variability in non-decision time, st (Figure 4d). Model selection re-
tained both st (β	=	−0.960,	SE	=	0.266,	p = 0.0004) and nonverbal IQ 
(β	=	0.508,	SE	=	0.0807,	p = 7.89	×	10−9).

We have so far identified several parameters of the DDM in-
dexing both visual and non-sensory processes that show univariate 
associations with reading skill (even after covariates for age, non-
verbal IQ, and ADHD diagnosis are considered). We next consid-
ered the extent to which these parameters were correlated with 
one another, potentially indicating clusters of parameters that index 
a common underlying mechanism (Figure 4e). As expected, we 
noted strong correlations between the four drift rate parameters. 
None of the drift rate parameters were significantly correlated with 
any non-sensory parameters after correction for multiple compar-
isons. There were moderate correlations between three non-sen-
sory parameters, st, t, and sz (st and t: r	=	0.685,	p = 9.75 × 10−16; t 
and sz: r = 0.335, p = 0.0005; sz and st: r	=	0.386,	p = 5.03 × 10−5). 
These three parameters largely contribute to modeling the leading 
edge of the reaction time distribution—sz allows for the presence of 
relatively fast errors, t shifts the response time distribution along 
the time axis, and st allows for responses before an individual's av-
erage response time. Finally, we noted that the parameter a was 
uncorrelated with any of the other parameters. Hierarchical clus-
tering (Ward's method, Ward, 1963) indicated that the correlation 
matrix was consistent with three clusters of parameters: a cluster 
consisting only of a, another consisting of the st, t, and sz, and a 
final cluster including all four drift rates and sv. This suggests that 
the DDM captures several distinct mechanisms underlying visual 
encoding and perceptual decision-making. The correlation matrix of 

TA B L E  1 Selected	model	of	drift	rate

β SE p

Intercept 1.534 0.0620 <1 × 10−15

Stimulus coherence 0.719 0.0249 <1 × 10−15

Age 0.268 0.0623 3.878	×	10−5

Reading skill 0.173 0.0623 6.605 × 10−3

Stimulus coherence: 
Reading skill

0.0869 0.0249 7.04 × 10−4

F I G U R E  3 The	relationship	between	drift	rate	and	reading	
skill in a subset of individuals with good phonological awareness. 
Average drift rate is calculated by averaging each individual's z-
scored drift rate estimates at each stimulus coherence level. Inset: a 
scatter plot indicating in black which subset of the study sample is 
included in the “good phonological awareness” group
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all DDM parameters and three hierarchical clusters are diagrammed 
in Figure 4e.

4.2.4  |  Visual and non-sensory predictors both 
explain reading outcomes

So far in our analysis, there seem to be several separate profiles of 
performance on the motion discrimination task that are associated 
with low reading skill: (1) reduced ability to encode and integrate 
visual information, (2) setting a more conservative decision crite-
rion, and (3) generally more variability in terms of the time taken 
to gather evidence and/or execute a decision. The lack of correla-
tions between many of the DDM parameter estimates indicates 
that individuals who display a deficit in terms of one process (e.g., 
visual encoding), are not necessarily the same individuals who per-
form abnormally in terms of another process (e.g., decision-mak-
ing), and that profiles of performance are variable across subjects. 
To test whether each dimension of task performance is indeed a 
unique contributor to a model of reading skill, we employed a lin-
ear modeling approach (with reading skill as the dependent vari-
able). To simplify the number of parameters, we introduce several 
composite measures based on our clustering analysis (Figure 4e). 
Drift rate is summarized as a composite measure, vcomp, by tak-
ing the first principal component of the four drift rates and sv. A 

second composite measure dcomp was derived from the first princi-
pal component st, t, and sz, which we expect represents aspects of 
variability in the decision-making process.

We performed model selection, starting with the full model with 
reading score as the dependent measure and all hypothesized DDM 
parameters and the three covariates (vcomp, dcomp, a, nonverbal IQ, 
ADHD diagnosis, and age) as predictors. The selected model re-
tained all three predictors from the DDM and nonverbal IQ (Table 2). 
This result confirms that non-sensory mechanisms explain additional 
variance in reading skill once the quality of visual encoding is ac-
counted for. As such, even within this single psychophysical task, 
there are multiple non-correlated dimensions of variance contrib-
uting to the pattern of responses observed in individuals with dys-
lexia—the ability to extract evidence from visual information, choice 
of decision threshold, and trial-to-trial variability in behavior.

F I G U R E  4 (a–d)	The	relationship	between	reading	score	and	four	non-sensory	parameters	of	the	drift	diffusion	model	(DDM).	(a)	decision	
threshold a, (b) variability in drift process starting point sz, (c) non-decision time t, and (d) variability in non-decision time st. (e) Correlations 
between parameters of the DDM. Boxes indicate hierarchical clustering results (Ward's method) and stars indicate significant correlations 
after Holmes–Sidak correction for multiple comparisons: *p < 0.05, **p < 0.01, and ***p < 0.001. (f) Group comparisons for the three 
composite measures based on hierarchical clustering of the DDM parameters: dcomp: composite of sz, st, and t, the a parameter, and vcomp: 
composite of the four drift rate parameters and sv. Note that all three composite parameters are z-scored. Error bars represent 1 SEM

TA B L E  2 Selected	model	of	reading	skill	from	drift	diffusion	
model parameters

β SE p

Intercept 0.972 0.351 0.00663

vcomp −0.274 0.0778 6.56 × 10−4

a −0.339 0.119 0.00548

dcomp 0.291 0.0755 2.10 × 10−4

Nonverbal IQ 0.0453 0.0766 4.68	×	10−8
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4.2.5  |  Do sensory deficits have cascading effects?

To address the question of whether performance on the motion dis-
crimination task is related to reading skill by way of phonological pro-
cessing, or in addition to it, we explore a series of linear models. We 
first test the hypothesis that predictors from the psychophysical task 
do not explain additional variance in reading skill once phonological 
processing is accounted for. We again modeled reading skill as a func-
tion of composite measures from the DDM—vcomp, dcomp, and a—as 
well as two phonological processing measures, PA and RAN, and 
the three covariates. Model selection retained all predictors except 
ADHD diagnosis and age (Table 3). Correspondingly, an ANOVA F-test 
comparing the selected model to a reduced model with only PA, RAN, 
and nonverbal IQ confirmed that adding predictors from the DDM ex-
plained variance in reading skill above and beyond the reduced model 
(F(100,	97)	=	4.0438,	p = 0.00936). The reduced model also had a 
higher Akaike Information Criterion (AIC) and Bayesian Information 
Criterion	(BIC)	(selected	model	AIC	=	794.4	and	BIC	=	813.9;	reduced	
model	AIC	=	800.7	and	BIC	=	815.6).	Because	ordinary	least	squares	

models may be poorly affected by multicollinearity, we also applied 
lasso regression with 10-fold cross validation (Friedman et al., 2010), 
and confirmed the same finding (modeling approach is provided in 
Figures S3 and S4; Table S10). Lastly, mediation analyses revealed, at 
most, a partial mediation effect for PA on the relationship between 
DDM parameters and reading skill (see Supplementary Analysis 2). 
From these analyses, we can confirm that all three predictors from 
the DDM are useful for explaining differences in reading skill in addi-
tion to traditional measures of phonological processing.

4.2.6  |  Multiple dimensions of skilled and 
disabled reading

Contrary to theories that seek to discover a unified deficit that char-
acterizes reading difficulties, we have established that visual motion 
processing is separable from non-sensory aspects of perceptual de-
cision-making, and both factors account for independent variance in 
reading skill. To speak to the question of how many separable under-
lying factors predict reading skill, we next apply exploratory factor 
analysis (EFA), an unsupervised learning approach for identifying the 
number, and characteristics, of latent factors that explain the correla-
tion structure of a dataset (Costello & Osborne, 2005; Ferguson & 
Cox, 1993; Kline, 2013). We applied EFA to characterize the space 
of the DDM parameters, nonverbal IQ, and the six subtests of the 
CTOPP. An analysis of the eigenvalues of the correlation matrix in-
dicated that four latent factors were warranted (i.e., the first four 
eigenvalues >1, see scree plot in Figure S5), and this was confirmed 
by parallel analysis (Hayton et al., 2004). The four factors are shown 
in Figure 5 with orthogonal varimax rotation. The total proportion 
of	explained	common	variance	by	the	four-factor	model	was	55.8%	
(Factor 1: 20.3%, Factor 2: 14.2%, Factor 3: 10.7%, Factor 4: 10.6%).

TA B L E  3 Selected	model	of	reading	skill

β SE p

Intercept −0.554 0.256 0.0331

vcomp −0.120 0.0601 0.0491

a −0.193 0.0871 0.0293

dcomp 0.142 0.0570 0.0140

Nonverbal IQ 0.335 0.0602 2.26 × 10−7

CTOPP PA 0.172 0.0653 0.0097

CTOPP RAN 0.521 0.0582 2.49 × 10−14

Abbreviations: CTOPP, Comprehensive Test of Phonological Processing; 
PA, phonological awareness; RAN, rapid automatized naming.

F I G U R E  5 Factor	loadings	for	the	orthogonal	four-factor	model	are	shown	in	the	table;	shading	corresponds	to	absolute	value	of	the	
loading. The scatterplot shows the correspondence between true (measured) and predicted reading skill using a linear model with all four 
factors as predictors. Each point was predicted using leave-one-out cross-validation (LOO-CV). Color indicates whether that point was 
more accurately predicted by the single-factor model or the full model with all four factors. Green points had a lower squared error when 
predicted by the four-factor model, and purple points had a lower squared error when predicted by the single-factor. Gray points had similar 
prediction accuracy for both models. CTOPP, Comprehensive Test of Phonological Processing
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The loadings of the first factor are dominated by the four drift 
rate parameters, whereas the second factor is loaded most heavily 
by nonverbal IQ and four of the CTOPP subtests. The remaining two 
subtests, Rapid Digits and Rapid Letters, load onto their own factor 
(in line with the double-deficit hypothesis, Wolf & Bowers, 1999). An 
additional factor appears to reflect non-decision time and variability 
parameters of the DDM st, sz, and t. Notably, the evidence threshold 
parameter, a,	 is	not	particularly	associated	with	any	factor;	87%	of	
variance in a is unexplained by this model.

Factor analysis largely conforms to the intuitions we have built 
so far from linear models: drift rate, although correlated with phono-
logical processing and perhaps partially mediated by it, is identified 
as a separate factor. Drift rate and the non-sensory parameters of 
the DDM are modeled as observations from two distinct factors. 
It is likely that a is representative of an additional factor, consistent 
with its lack of correlations with any other parameter of the DDM 
(note that without multiple estimates of a, EFA cannot estimate 
measurement noise and consequently does not assign it to a new 
factor). Critically, each of these four factors was significantly related 
to reading skill consistent with the interpretation that, rather than 
representing a single underlying construct, there are multiple, inde-
pendent cognitive and sensory dimensions characterizing individual 
differences in reading skill (Figure 5). A linear model of reading skill 
as a function of scores on the four factors indicated that all four ef-
fects were significant (see coefficients in Figure 5). Furthermore, the 
full	model	also	had	a	lower	AIC	(full	model	AIC	=	798.8,	single	factor	
model	AIC	=	869.9)	 and	BIC	 (full	model	BIC	=	814.6,	 single	 factor	
model	BIC	=	877.8).

In addition to standard model selection, we compared the accu-
racy of the four-factor model on predicting held-out observations 
to the accuracy of a single-factor model. Using leave-one-out cross 
validation, the four-factor model explained 63.9% of variance in 
reading skill for the held-out points. The single factor model used 
only Factor 2, which is largely a composite of the CTOPP measures 
of PA, phonological memory, and nonverbal IQ. This model only ex-
plained 27.4% of variance in reading skill for held-out observations 
(Figure S6), indicating the necessity of considering multiple (at least 
four) underlying dimensions in order to accurately predict individual 
differences in reading ability.

5  |  CONCLUSIONS

Our results demonstrate that (1) a core phonological deficit model 
is insufficient to account for many cases of developmental dyslexia, 
(2) abnormal performance on the motion discrimination experiment 
in children with dyslexia cannot be ascribed to a uniform profile of 
either visual processing or non-sensory deficits, (3) both visual and 
non-sensory mechanisms explain variance in reading skill above and 
beyond phonological processing, (4) the correlational structure of 
cognitive, linguistic, and visual measures explored here is consist-
ent with, at minimum, four underlying factors, (5) each of these four 
factors accounts for unique variance in children's reading abilities. In 

sum, our results are not consistent with models of dyslexia that only 
consider phonological processing or models in which impairments in 
visual processing or decision-making primarily affect reading devel-
opment via a disruption of phonological processing. Instead, dyslexia 
should be conceptualized as a disorder that may arise from several 
distinct loci.

Our work is consistent with that of Pennington and colleagues, 
which has capitalized on large samples to demonstrate that indi-
viduals with dyslexia have a heterogeneous profile of cognitive and 
linguistic impairments (Pennington, 2006; Pennington et al., 2012; 
Peterson & Pennington, 2015). The present work extends this per-
spective to address the role of sensory processing and perceptual 
decision-making deficits in dyslexia.

Several preceding studies have attempted to investigate mul-
tiple candidate mechanisms of dyslexia, including auditory, visual, 
and motor processes. Our work generally conforms to the find-
ing of at least four such studies (Ho et al., 2002; Menghini et al., 
2010; Ramus et al., 2003; White et al., 2006) that show a het-
erogenous pattern of deficits present in struggling readers. For 
example, Talcott et al. collected several psychophysical measures 
in 350 school-aged children and, like us, found that each explained 
a small, but unique, percentage of variance in reading skill (Talcott, 
Witton, et al., 2000). Valdois and colleagues have argued that defi-
cits in visual attention are independent of phonological process-
ing deficits and represent a unique cause of dyslexia (Bosse et al., 
2007;	 Lobier	 &	Valdois,	 2015;	 Lobier	 et	 al.,	 2012;	 Zoubrinetzky	
et al., 2014), but this point remains contentious for a variety of 
reasons (Saksida et al., 2016).

To our knowledge, the present work is the first use of the DDM 
to model motion discrimination in relation to reading skill. Our re-
sults from Study 2 serve as a partial validation of two seemingly 
contradictory theories: some poor readers show a pattern of perfor-
mance consistent with reduced ability to extract information from 
incoming visual signals, while others are better described as having 
normal visual processing but altered decision-making characteristics 
(including, as the propensity to make fast errors reveals, more tri-
al-to-trial variability in the relative amount of evidence needed to 
initiate a decision). It is interesting to note that studies of lexical de-
cision-making have revealed similar differences in the decision-mak-
ing process (elevated evidence criteria) suggesting a potential link 
between performance on simple perceptual judgments (i.e., motion 
discrimination)	 and	 altered	 lexical	 access	 during	 reading	 (Zeguers	
et al., 2011). Neither the statistical learning hypothesis, which would 
argue that sensory deficits are not meaningful, nor the magnocellu-
lar deficit hypothesis, which would fail to predict the non-sensory 
parameters of the DDM relate to reading skill, entirely match our 
results. Yet we see evidence for both visual- and non-sensory dif-
ferences in our sample. In line with these findings, we propose that 
each mechanism should be reconceptualized as a dimension of risk, 
as opposed to a single cause, of reading difficulties.

As a correlational study, our results cannot validate any partic-
ular causal mechanism. It is possible that each factor represents 
clusters of symptoms that indicate underlying abnormalities in a 
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processing system, but are not a direct cause of reading difficul-
ties themselves. For example, the fact that differences in visual 
motion processing predict unique variance in reading skill does 
not necessarily mean that, for those individuals, poor perception 
of visual motion is the cause of their reading difficulty. Instead, 
measurements of task performance may be a proxy for the fidelity 
with which the visual system constructs a sensory representation 
of a noisy stimulus (Sperling et al., 2005, 2006), or the efficiency 
of information transfer between different visual regions (Yeatman 
et al., 2012, 2013), or the integration of sensory signals over time 
(Joo et al., 2017). Broadly speaking, skilled reading requires rapid 
communication among a distributed network of visual, auditory, 
and language processing systems and an impairment in any one of 
these systems, or the connections between them, could cause dif-
ficulties learning a complex skill like reading (Wandell & Yeatman, 
2013).

Our main conclusion is a lack of concordance with either a sin-
gle deficit or cascading deficit model. Evidence derives from the 
Healthy Brain Network public dataset (Study 1), which was modestly 
consistent with a phonological-core model of dyslexia and but also 
strongly suggested the need for other predictors to (1) avoid vast 
overprediction (low specificity) of reading disability in the general 
population and (2) explain the cases of dyslexia that occur without a 
clear phonological impairment. Further evidence comes from Study 
2, in which several forms of modeling suggested both direct and 
indirect influences of visual processing on reading skill; a cascad-
ing model would predict that parameters from the DDM are useful 
only insofar as they relate to phonological processing, but mediation 
analysis and factor analysis were both consistent with the presence 
of multiple distinct latent variables that combine additively to ex-
plain reading skill. As such, our results contradict claims that a single 
mechanism, either phonological, visual, or non-sensory, can be con-
sidered the “fundamental” or “core” deficit of dyslexia.

The clinical implications of this multifactorial model are an im-
portant target for future research. Whether or not different risk 
profiles predict outcomes for children enrolled in competing inter-
vention programs is an empirical question that cannot be readily 
inferred from correlational data. For example, in a previous inter-
vention study we demonstrated that individual differences in visual 
motion sensitivity have no prognostic value for predicting a child's 
response to intervention (at least for the intervention approach we 
employed, Joo et al., 2017).

Moving forward, we propose an additive risk factor mode of 
dyslexia in which multiple dimensions of sensory, cognitive, and lin-
guistic processes contribute distinct risk for reading difficulties. Our 
results are agnostic to whether poor performance on any given task 
indicates deficits in the specific targeted function (e.g., motion pro-
cessing) or indexes processing capacities of a broader system (e.g., 
constructing a high-fidelity representation of a noisy visual signal). 
There are also likely to be dimensions that we have not explored 
here, as there is growing evidence for a unique role of oral language 
and vocabulary skills in reading development (Catts et al., 2017; 
Snowling,	2008;	Snowling	&	Melby-Lervåg,	2016).

In sum, an additive model outperforms cascading deficit models 
or models that only consider measures of phonological processing 
without considering the role of sensory processing. Rather than con-
tinuing to seek a single underlying cause of dyslexia, the field should 
systematically build toward a more complete model of the factors 
that add risk (or protection) for reading difficulties. Our data and 
model necessitate a shift toward theories that explain skilled and 
disabled reading as emerging from a high-dimensional space deter-
mined by several distinct processing systems.
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