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ABSTRACT:
Research shows that, on average, children with dyslexia behave less categorically in phoneme categorization tasks.

This study investigates three subtle ways that struggling readers may perform differently than their typically

developing peers in this experimental context: sensitivity to the frequency distribution from which speech tokens are

drawn, bias induced by previous stimulus presentations, and fatigue during the course of the task. We replicate

findings that reading skill is related to categorical labeling, but we do not find evidence that sensitivity to the

stimulus frequency distribution, the influence of previous stimulus presentations, and a measure of task engagement

differs in children with dyslexia. It is, therefore, unlikely that the reliable relationship between reading skill and

categorical labeling is attributable to artifacts of the task design, abnormal neural encoding, or executive function.

Rather, categorical labeling may index a general feature of linguistic development whose causal relationship to

literacy remains to be ascertained.
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I. INTRODUCTION

It is well established that reading skill is correlated with

performance on phoneme categorization tasks in which lis-

teners are asked to categorize spoken syllables based on a

single contrastive feature (Goswami et al., 2002;

Noordenbos and Serniclaes, 2015; O’Brien et al., 2018;

O’Brien et al., 2019; Vandermosten et al., 2010). However,

the mechanism underlying the link between impaired proc-

essing of phonemes and developmental dyslexia remains

unclear. While phonological awareness, the ability to iden-

tify and manipulate phonemes in speech, is one of the stron-

gest predictors of dyslexia, there are several reasons to

question that phonological processing is the “core deficit”

that explains why all children with dyslexia struggle with

learning to read. Some researchers have criticized this “core

phonological deficit theory” on the grounds that not enough

children could be accurately diagnosed on the basis of pho-

nological awareness alone (Pennington et al., 2012; Wolf

and Bowers, 2000). Perhaps the most popular line of reason-

ing, though, is that children with dyslexia perform (on aver-

age) poorly on many measures of auditory processing,

visual processing, working memory, and automaticity,

which cannot be explained by a phonological deficit alone.

These observations have motivated a new wave of research,

searching for a more fundamental mechanism that might

explain the myriad of deficits (including phonological

awareness) that are associated with reading (dis)ability

(Ahissar et al., 2006; Jaffe-Dax et al., 2017; Lieder et al.,
2019; Ziegler, 2008).

While some researchers have taken the perspective that

individuals with dyslexia have fundamentally impaired

auditory or visual processing (Goswami, 2011; Stein, 2018;

Tallal et al., 1996), the psychophysical literature on the

whole is currently inconsistent with a homogeneous and uni-

form pattern of sensory impairment (Amitay et al., 2002;

H€am€al€ainen et al., 2013; Rosen, 2003; Stuart et al., 2006).

Noting this, some researchers have argued that individuals

with dyslexia are constrained not by sensory processing at a

basic level but by the demands posed by psychophysical

tasks (Ahissar, 2007; Ramus and Ahissar, 2012).

While the appeal to a domain-general mechanism could

potentially explain the heterogeneity observed in the sensory

processing literature, a consensus is yet to be reached

regarding which particular aspects of the psychophysical

tasks are the “bottleneck” in the performance. One candidate

is attention and task vigilance; dyslexia is often comorbid

with attention-deficit/hyperactivity disorder (ADHD;

German�o et al., 2010; Light et al., 1995; Stevenson et al.,
2005). In accord with this hypothesis, one previous study

has shown that performance on “catch trials” tends to

degrade faster over the course of a task in poor readers than

do controls (Messaoud-Galusi et al., 2011; see also Roach

et al., 2004, but note that Vandermosten et al., 2018,

reported null results in a similar design). Another candidate

is statistical learning. Statistical learning was originally

defined as “a way of extracting statistical regularities from

the environment” (Saffran et al., 1996). It has been proposeda)Electronic mail: andronovhopf@gmail.com
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that individuals with dyslexia are less able than their typi-

cally developing peers to take advantage of regularities in

their environment (Ahissar et al., 2006; Banai and Ahissar,

2006; Gabay et al., 2015; Lieder et al., 2019). The statistical

learning hypothesis is especially appealing because the pro-

cess of learning to read involves forming connections

between phonological and orthographic representations,

which requires a learner to extract regularities from visual

and auditory sequences (Ziegler and Goswami, 2005) and

also to learn and automate the probabilistic relationship

between a given letter and the phonemes it represents

(Apfelbaum et al., 2013). Distributional learning—sensitiv-

ity to the distribution from which stimuli are drawn—is

known to be a key part of language acquisition in develop-

ment (Maye et al., 2002). Thus, there is growing interest in

the possibility that individual differences in mechanisms

such as sensitivity to environmental statistics, could explain

the degraded performance across an array of experiments as

well as a difficulty with learning to read.

The phoneme categorization task provides a reasonably

reliable setting to explore how task performance may be dif-

ferentially affected by task demands in struggling readers.

Because it has been so extensively used, experimenters can

have reasonable confidence that the key effect—shallower

psychometric functions in struggling readers—is broadly rep-

licable for many stop consonant continua (Noordenbos and

Serniclaes, 2015; O’Brien et al., 2018; O’Brien et al., 2019).

However, the mechanisms underlying the psychometric func-

tion shape may be difficult (if not impossible) to disambiguate

as there are at least two plausible explanations for individual

differences. First, individual differences in noise at the level

of phonetic cue encoding could influence shape: increased

noise around the category boundary will lead to a flatter func-

tion. Second, individual differences in categorization strategy

must be considered. The optimal strategy—consistently apply-

ing the same label to every token with a phonetic cue above

some threshold—would lead to a steep psychometric function,

whereas probability matching based on the statistics of the cue

distribution (detailed in Clayards et al., 2008) would lead to a

shallower function. It is unclear which strategy children might

use in this experimental context or which mechanism is most

relevant to children’s performance on the task. While these

limitations do not invalidate the task as a probe of some

dimension of speech perception related to literacy skill, they

are worth bearing in mind.

Previously, we showed that reduced categorization in

struggling readers is somewhat influenced by the working

memory demands of the task but could not be entirely

explained by task difficulty: irrespective of the task-

difficulty, we found a correlation between reading skill and

task performance (O’Brien et al., 2018). We now investigate

several other aspects of task performance to clarify the

extent to which the phoneme categorization-reading rela-

tionship depends on specific experimental conditions.

We first consider the effects of varying the stimulus dis-

tribution from which speech tokens are drawn. Typically, in

categorization experiments, stimuli are drawn from a uniform

distribution. Adults without reading disability show sensitiv-

ity to the stimulus distribution in the categorization task

(Clayards et al., 2008): the task elicits more categorical

behavior when stimuli are drawn from narrow bimodal distri-

butions than when drawn from broad distributions. Recently,

work by Vandermosten et al. (2018) suggested that children

with dyslexia were, on average, less able to utilize distribu-

tional cues to learn a non-native speech contrast. In the pre-

sent study, we examine how children aged 8–12 years

performed on a categorical phoneme labeling task with two

conditions: a bimodal and uniform distribution of native

speech tokens (note that although Clayards et al., 2008, com-

pared two bimodal distributions of various widths, a uniform

distribution is equal to an infinitely wide bimodal distribu-

tion). This result is of interest for two reasons. First, we hope

to better characterize the matter of distributional sensitivity in

struggling readers, which is largely unsettled in the literature.

Second, studying nonuniform stimulus distributions may

bring the speech categorization task closer to representing

ethological conditions. In natural speech, utterances are typi-

cally “drawn” from a structured distribution—it is this struc-

ture that may enable children to learn categories in the first

place (McMurray et al., 2009). If struggling readers are

indeed more categorical when presented with stimuli from

bimodal versus uniform distributions, that suggests their abil-

ity to perceive speech in naturalistic conditions may be less

impaired than many researchers argue on the basis of the cat-

egorical labeling task (Noordenbos and Serniclaes, 2015).

Next, we explore how the immediate context of recently

presented speech tokens affects judgments about the identity

of the current stimulus (e.g., after a clear phoneme exemplar

is heard, a listener might be more likely to judge an ambigu-

ous speech sound as representing a different category).

Considering how recent stimulus presentations influence

performance is of interest for several reasons: it addresses

longstanding claims that individuals with dyslexia struggle

when stimuli are presented sequentially (Tallal, 1980) or

that they show abnormal stimulus adaptation and faster

implicit memory decay (Ahissar et al., 2006; Jaffe-Dax

et al., 2017; Perrachione et al., 2016). Finally, we look for

hallmarks of fatigue and disengagement in our participant’s

responses by examining changes in task performance over

the duration of the experiment. In line with previous work,

we find that there is a moderate relationship between pho-

neme categorization and reading skill; this relationship can-

not be attributed to (1) the stimulus distribution, (2) stimulus

recency effects, or (3) task disengagement. Thus, we con-

clude that some people with dyslexia have difficulties cate-

gorizing speech sounds and this deficit, though likely not

universal, is not an artifact of experimental conditions, such

as the distribution, order, and duration of the experiment.

II. METHODS

A. Participants

A total of 62 native English-speaking children aged

8–12 years were recruited for the study. Children without
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known auditory disorders were recruited from a database of

volunteers in the Seattle area (University of Washington

Reading and Dyslexia Research Database1). Parents and/or

legal guardians of all participants provided written informed

consent under the University of Washington Institutional

Review Board protocol. All subjects demonstrated normal

or corrected-to-normal vision. Participants were tested on a

battery of cognitive and literacy assessments, including the

Woodcock-Johnson IV (WJ-IV) Letter-Word Identification

and Word Attack subtests, the Test of Word Reading

Efficiency (TOWRE), and the Weschler Abbreviated Scale

of Intelligence (WASI). All participants underwent a hear-

ing screening to ensure pure tone detection at octave fre-

quencies between 500 and 8000 Hz in both ears at 25 dB

hearing level (HL) or better.

B. Demographics

Here, we present analyses of task performance where

reading skill is treated as either a continuous or discrete

group variable. It has been reasonably established that read-

ing skill is best modeled as a continuous variable with no

clear demarcation between readers who are below-average

and readers who are dyslexic (Shaywitz et al., 1992). Many

results on phoneme categorization published so far

(Goswami et al., 2002; O’Brien et al., 2018; O’Brien et al.,
2019; Vandermosten et al., 2011) support the perspective

that there is a continuous relationship between task perfor-

mance and reading skill. However, for completeness and

ease of comparison with existing literature on dyslexia, we

also provide group-level analyses.

Reading skill was summarized in a composite variable:

as both the Woodcock-Johnson Basic Reading Skill measure

(WJ-BRS; a composite of word attack and letter word iden-

tification subtests) and the TOWRE index (a composite of

the sight word efficiency and phonemic decoding efficiency

subtests) are scored on the same standardized scale [mean-

¼ 100, standard deviation (SD)¼ 15], a composite reading

skill measure was created by averaging the two metrics for

each participant. Using a composite of both measures as the

criterion improves the reliability of our group assignments

because they are highly correlated measures (r ¼ 0:877;
p < 0:001, in our sample). Participants were assigned to the

dyslexia group if their composite reading score was at least

1 SD below the population mean (i.e., <85). Six participants

had reading scores above the 1 SD cutoff but a parental

report of dyslexia; as in our previous work (O’Brien et al.,
2019), these participants were excluded from the control

group for group-level comparisons but are included in all

other statistical analyses and data. The scores for these six

participants fell between 86.5 and 92; they may represent

children who, at one point, met criteria for reading disability

but have since been remediated into the low-end of the typi-

cal range. Another possibility is that these children struggled

on measures that we did not consider here, but would be of

interest to the diagnosing professional. We cannot be certain

as there is no standard for diagnosis among professionals in

our area that we can relate to the reading measures assessed

here.

Additionally, all subjects were required to have nonver-

bal intelligence quotient (IQ) and full-scale IQ (WASI

matrix reasoning and FS-2 scores, respectively) no less than

1 SD below the population mean (as in O’Brien et al., 2018;

O’Brien et al., 2019); three subjects were below this cutoff

and excluded from further analysis. This left a total of 59

participants eligible for the study based on their cognitive

characteristics, 53 of which could be confidently categorized

as dyslexic or control for the purpose of group-level

comparisons.

There were 24 subjects in the dyslexic group (13 male)

and 29 subjects in the control group (14 male). The mean age

and SD were 9.5 yr (1.4 yr) and 10.0 yr (1.5 yr), respectively,

in the dyslexic and control groups; the difference in age

was not significant (Kruskal-Wallis rank sum test, Hð2Þ
¼ 3:573; p ¼ 0:168), although we noted that there was a

small correlation between age and reading skill (r ¼ 0:253;
p ¼ 0:053). Importantly, we tested age as a covariate in our

exploratory secondary models. We did not exclude partici-

pants with ADHD diagnoses from the study because ADHD

is highly comorbid with dyslexia (German�o et al., 2010).

Indeed, research suggests that there is little validity in distin-

guishing children with dyslexia and a secondary comorbid

diagnosis (Boada et al., 2012; Peters and Ansari, 2019).

Therefore, we accounted for ADHD diagnosis in our explor-

atory covariate analysis. Of 59 total participants, 13 had a

formal diagnosis of ADHD: 7 in the dyslexic group and 4 in

the control group. The difference in prevalence of ADHD

across groups was not significant (Hð1Þ ¼ 1:851; p ¼ 0:174).

Table I shows group comparisons on measures of read-

ing and cognitive skills. Note that IQ (either measured as

full-scale or nonverbal) differed by group. While we were

not concerned that low IQ prevented any subject from

understanding the task because low IQ was an exclusion

criterion, we included nonverbal IQ as a covariate in our sta-

tistical analyses.

C. Stimuli

A seven-step /ba/�/da/ speech continuum was created

using Praat version 6.0.37 (Boersma and Weenink, 2020).

Synthesis of the continuum followed the procedure

described in O’Brien et al. (2018), using linear predictive

coding to alter the formant contours of a naturally produced

/ba/ token. In the /ba/�/da/ continuum, the starting fre-

quency of the second vowel formant (F2) transition was var-

ied. In brief, the seven speech tokens were identical except

for their F2 formant contour. All tokens were resynthesized

from a /ba/ utterance spoken by a male American English

speaker. The starting frequency of F2 was varied in seven

linearly spaced steps from 1085 Hz (/ba/) to 1460 Hz (/da/).

F2 followed a linear ramp to a terminal value of 1225 Hz

over the course of 100 ms at which point the steady-state

portion of the vowel was maintained for 250 ms.

J. Acoust. Soc. Am. 148 (4), October 2020 O’Brien et al. 2211

https://doi.org/10.1121/10.0002181

https://doi.org/10.1121/10.0002181


D. Procedure

Stimulus presentation and participant response collec-

tion was managed with PsychToolbox for MATLAB (Brainard,

1997). Auditory stimuli were presented at 75 dB sound pres-

sure level (SPL) via circumaural headphones (Sennheiser

HD 600, Wedemark, Germany). Children were trained to

associate sounds from the two speech continua with animal

cartoons on the left and right sides of the screen and indicate

their answers by pressing the right or left arrow key. Large

text labels were provided over each animal cartoon (“Ba” on

the left side and “Da” on the right) so that participants did

not have to memorize the animal associated with each

sound. Throughout all blocks, each cartoon was always

associated with the same stimulus end point.

Participants first completed a practice round consisting

of ten presentations, five of each continuum end point, with

feedback on each trial. Participants were allowed to repeat

the practice round up to three times until they had achieved

at least 75% accuracy. All participants were able to meet

this minimum standard.

The main task was presented in two parts, one in which

the stimuli were drawn from a uniform frequency distribu-

tion and another in which they were drawn from a bimodal

distribution. In the unimodal condition, all stimuli were pre-

sented 15 times. In the bimodal condition, the presentation

frequency was greatest at the continuum end points and least

in the center of the continuum (see Table II).

Because we were interested in exploring the effects of

recently presented stimuli on judgments about the current

stimulus, we used a “random but frozen” list of stimuli. This

means that we randomly generated the order in which stim-

uli would be presented in each condition, but every partici-

pant was tested with this fixed stimulus order. This reduced

one source of variability across subjects so that we could

perform more targeted investigations about how recent stim-

ulus presentations differentially affect strong and poor

readers.

In each condition (uniform or bimodal frequency distri-

bution), participants heard a total of 210 speech sounds.

After every 35 stimulus presentations, a quick optional

break was presented. Between the two test conditions, read-

ing assessments were performed. If a participant did not

already have an IQ measure on file from a previous labora-

tory visit, the WASI-III was also administered.

Note that three subjects did not wish to complete the

task and opted to quit part of the way through; one such par-

ticipant came from the control group and the other two par-

ticipants were from the dyslexic group. Their data were

omitted from the study. Complete data were, therefore, col-

lected from a total of 56 participants (28 control, 22 dys-

lexic, and 6 not categorized).

Seven participants completed the uniform condition

first and 49 completed the bimodal condition first. The rea-

son for this discrepancy is that during data collection for the

first 15 subjects, we alternated which distribution was pre-

sented first. After data were collected for these subjects, we

were surprised to see little evidence that participants

behaved differently in either condition—particularly

because of the positive evidence from two published studies

(Clayards et al., 2008; Vandermosten et al., 2018) and our

own pilot data in six subjects, which appeared consistent

with an effect of stimulus distribution. We, thus, changed to

a policy of always providing the bimodal distribution first,

wary that initial exposure to the uniform distribution could

affect category learning in subsequent conditions. We were

unable to detect any significant differences between task

performance in these individuals and the remainder of the

cohort. Psychometric function slope did not significantly

differ by group [b ¼ �0:142, standard error (SE)¼ 0.365,

p¼ 0.698], nor was there a significant interaction between

the order distributions were presented and slope in each con-

dition (b ¼ 0:294, SE¼ 0.485, p¼ 0.547). Based on this

evidence, we retained these seven subjects in the data set.

E. Psychometric curve fitting

We used the MATLAB toolbox Psignifit 4.0 (The

MathWorks, Natick, MA) to fit psychometric functions. The

fitting routine optimized the fit of a logistic curve function

with four parameters modeling the upper and lower asymp-

totes, width of the logistic function, and the category bound-

ary. The width of the logistic function was transformed to

the slope at the category boundary value (the estimated

point on the continuum where 50% of tokens are labeled

Da) to give a standardized measure of psychometric func-

tion slope.

TABLE I. Summary statistics and group differences on demographic and

behavioral measures.

Control Dyslexic

n ¼ 29 n ¼ 24

14 male, 15 female 13 male, 11 female Significance

WASI-III

FS-2 123.9 (11.3) 101.8 (13.1) <0.001

Nonverbal IQ 60.5 (8.6) 50.3 (7.8) <0.001

WJ-IV

Basic reading score 115.3 (9.8) 79.8 (7.2) <0.001

Nonword 114.4 (12.3) 87.8 (10) <0.001

Real word 114.1 (8.7) 74.8 (10.3) <0.001

TOWRE 2

TOWRE index 105.2 (11.1) 69.5 (7) <0.001

Nonword 104.6 (12) 72.9 (8.2) <0.001

Real word 105.5 (11.3) 69.2 (9.3) <0.001

CTOPP 2

Phonological

awareness

102.8 (13.3) 91.6 (11.4) 0.011

Phonological

memory

100.5 (13.8) 88.2 (12.1) 0.002

Rapid naming 99.4 (11.4) 83.7 (9.8) <0.001

TABLE II. Stimulus presentation frequency in bimodal condition.

Stimulus 1 2 3 4 5 6 7

Frequency 52 34 14 10 14 34 52
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Psignifit uses a Bayesian framework to optimize param-

eter estimates not only according to likelihood of generating

a given set of behavioral responses but also with regard to

prior distributions of each parameter. In the case of psycho-

metric function fitting, where the number of presentations of

each stimulus is often relatively low, inappropriate priors

can have an outsized influence on parameter estimates—

particularly, as we and many others have summarized

elsewhere, when it comes to estimates of the slope and

asymptotes. We, therefore, used priors identical to a previ-

ous study using this /ba/�/da/ continuum (O’Brien et al.,
2019): the asymptotic priors were modeled as a uniform dis-

tribution on the range [0,0.10]. In other words, the lower

and upper asymptotic parameters could vary freely in the

range [0,0.10] to give a lower asymptote between 0% and

10% and an upper asymptote between 90% and100%. This

prior width was chosen on the basis of tenfold cross-

validation over the data set to determine the psychometric

fitting parameters that best predicted the participant’s deci-

sions on held-out trials (see O’Brien et al., 2018; O’Brien

et al., 2019, for further details).

To ensure the validity of psychometric function param-

eter estimates, we excluded any psychometric functions that

could not be fit with a category boundary between contin-

uum steps 1–7. Only one psychometric function (produced

by a subject in the dyslexic group presented with a uniform

stimulus distribution) was excluded on these grounds.

We checked for correlations between reading skill and

several metrics of psychometric function fit. The correlation

between reading skill and sum of squared residuals (aver-

aged over each participant’s two psychometric function fits)

was not significant (r ¼ �0.185, p¼ 0.092). Likewise, devi-

ance of the fits was not significantly associated with reading

skill (r ¼ �0.076, p¼ 0.41).

F. Statistical analysis of parameter estimates

After we fit psychometric functions for each subject in

each condition, we used a series of generalized linear mixed

models to determine the relationship between reading abil-

ity, the frequency distribution from which stimuli are drawn,

and four dependent measures. These dependent measures

were estimates of task performance based on behavioral

responses: (1) psychometric function slope, (2) asymptote,

(3) category boundary, and (3) a composite measure of psy-

chometric function shape.

Each participant’s average asymptote was determined

by averaging the upper and lower asymptote estimates of a

given function (i.e., their deviations from zero and one,

respectively). The composite measure PC1 was constructed

from a principal components analysis on the four parameters

of each psychometric function collected in the study. The

first principal component captured 46.1% of variance in the

four parameters and was defined by the following linear

weights: category boundary, �0.385; slope, 0.479; upper

asymptote, �0.504; lower asymptote, �0.607.

Linear modeling was performed with the lme4 library

for R. For each dependent measure, fixed-effect predictors

with sum coding were used for the distribution (uniform or

bimodal) variable. Reading ability was entered as a continu-

ous fixed-effect predictor except where otherwise stated.

We tested a core model,

parameter � reading � distributionþ ð1jsubject IDÞ;
(1)

where parameter was the psychometric parameter of inter-

est: slope, lapse, category boundary, or PC1. We also tested

the additions of three additional “nuisance” predictors to

this core model: the presence/absence of ADHD diagnosis

(treatment coding), age (continuous predictor), and non-

verbal IQ (WASI-III matrix reasoning score; continuous

predictor). The core modeling results are reported in the

text, and the effects of the individual nuisance predictors are

reported in Fig. 1 and Table III.

G. Data availability statement

Data are available immediately in a GitHub repository

hosted by the laboratory.2

III. RESULTS

As expected on the basis of previous studies, we found

relationships between reading skill and psychometric func-

tion shape (Noordenbos and Serniclaes, 2015; O’Brien

et al., 2018; O’Brien et al., 2019; Vandermosten et al.,
2010). In Fig. 1, we can see that some psychometric parame-

ters were correlated with reading ability, most notably the

asymptote and PC1. Category boundary (the estimated point

on the continuum with 50% of tokens labeled Da) was not

significantly correlated with reading ability in either the uni-

form or bimodal condition.

We confirmed this with a generalized linear mixed model

analysis, first, with regard to the relationship between reading

ability and psychometric slope. In our core model of slope

(Table III), reading skill was associated with a sharper slope

as expected, although this effect did not reach the threshold

of significance (b ¼ 0:224, SE¼ 0.118, p¼ 0.062). Note that

the main effect of distribution (b ¼ 0:238, SE¼ 0.161,

p¼ 0.15) and the interaction of distribution and reading abil-

ity (b ¼ �0:026, SE¼ 0.163, p¼ 0.87) were not significant.

No nuisance variable proved to have a significant effect on

slope (see Table IV).

Thus, we did not detect a significant relationship

between psychometric slope and the frequency distribution

from which stimuli were drawn. Moreover, we did not find

evidence supporting the hypothesized interaction between

reading skill and experimental condition (bimodal or uni-

form distribution).

Similarly, we tested the core model as a predictor of the

asymptote and found a significant main effect of reading

skill (b ¼ �0:013, SE¼ 0.004, p< 0.001). There was also a

modest main effect of distribution on the asymptote; the
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uniform distribution was associated with an 0.008 point

greater asymptote than the bimodal distribution

(SE¼ 0.004, p¼ 0.049). While this effect is small, it is in

the direction we would expect if the bimodal distribution

had a stabilizing effect on phoneme categories in most par-

ticipants (at least, more reliable labeling of the clear cate-

gory exemplars at the end points of the continuum).

Importantly, the interaction of the asymptote and reading

skill was not significant. Of the nuisance variables, only age

was significant (see Table V). Even when age was included

in the model, the main effect of reading skill remained

significant.

Next, we modeled category boundary. Reading skill

and the interaction of reading skill and distribution were

both insignificant predictors. There was a significant main

effect of distribution on category boundary; in the bimodal

condition, participants, on average, tended to have a higher

category boundary than in the uniform condition. In other

words, they were slightly biased to label sounds as ba in the

bimodal condition relative to the uniform condition. The

effect is modest (an average shift of approximately 1/4 of a

step on the continuum). We had not hypothesized that the

category boundary would shift with the stimulus distribu-

tion, and it is important to note that having a higher or lower

category boundary is not generally considered better for

speech perception. As such, this finding should be consid-

ered post hoc. Still, the associated p-value would pass most

standard corrections for multiple corrections (b ¼ �0:230,

SE¼ 0.064, p � 0:001). No nuisance variable was a signifi-

cant predictor of the category boundary (see Table VI).

FIG. 1. (Color online) Plots of model

psychometric function parameter esti-

mates versus reading score. Each point

corresponds to parameter estimates for

one subject in one condition (bimodal

or uniform distribution). Lines indicate

the best fit regression line with 95%

confidence intervals in shaded regions.
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Last, considering PC1 as the dependent variable, reading

skill was a significant predictor of PC1 (Table III). Neither distri-

bution nor the interaction of reading skill and distribution were

significant predictors. Of the nuisance variables, only age was

associated with a significant effect; after accounting for age, the

effect of reading skill was still significant (see Table VII).

Taken as a whole, we detected only minor effects of the

stimulus distribution on the asymptote and category bound-

ary. Neither of these effects was hypothesized from the out-

set. Most importantly, we did not detect that any effect of

the stimulus distribution on any psychometric parameter

meaningfully varied with reading skill.

We also computed the Bayes factor (BF), which describes

the ratio of the likelihoods that our data set was generated by

either of the two models: H0, the null model with no interaction

between reading skill and stimulus distribution, and H1, the

model containing the hypothesized interaction (Kass and

Raftery, 1995). While a p-value describes the likelihood of

rejecting the null, the BF estimates which model is more likely

given the data (Wagenmakers, 2007).

We used an estimation of the BF from the Bayesian

information criterion (BIC; Wagenmakers, 2007),

BF01 � exp
BICðH1Þ � BICðH0Þ

2

� �
: (2)

In this case, the model H0 is defined as

parameter � readingþ distributionþ ð1jsubject IDÞ;
(3)

where the dependent variable parameter is a parameter of the

fitted psychometric functions—slope, asymptote, category

boundary, or PC1. Similarly, the model H1 is defined as

TABLE III. Core models of psychometric function parameters.

b SE p

Slope

Reading skill 0.224 0.118 0.062

Distribution 0.238 0.161 0.15

Reading skill * distribution �0.026 0.163 0.87

Asymptote

Reading skill �0.013 0.004 <0.001

Distribution 0.008 0.004 0.049

Reading skill * distribution 0.001 0.004 0.89

Category boundary

Reading skill 0.038 0.071 0.59

Distribution �0.230 0.064 <0.001

Reading skill * distribution 0.007 0.064 0.92

PC1

Reading skill 0.475 0.163 0.005

Distribution �0.015 0.128 0.91

Reading skill * distribution �0.013 0.129 0.92

TABLE IV. Effect of nuisance variables on slope.

b SE p

Age

Reading skill 0.174 0.120 0.15

Distribution 0.237 0.161 0.15

Age 0.134 0.082 0.11

Reading skill * distribution �0.024 0.162 0.88

ADHD

Reading skill 0.212 0.120 0.083

Distribution 0.238 0.161 0.15

ADHD �0.191 0.301 0.53

Reading skill * distribution �0.027 0.163 0.87

Nonverbal IQ

Reading skill 0.200 0.139 0.16

Distribution 0.238 0.161 0.15

Nonverbal IQ 0.047 0.140 0.74

Reading skill * distribution �0.026 0.163 0.88

TABLE V. Effect of nuisance variables on asymptote.

b SE p

Age

Reading skill �0.011 0.003 0.003

Distribution 0.008 0.004 0.048

Age �0.006 0.002 0.010

Reading skill * distribution 0.001 0.004 0.90

ADHD

Reading skill �0.012 0.004 <0.001

Distribution 0.008 0.004 0.050

ADHD 0.012 0.009 0.17

Reading skill * distribution 0.001 0.004 0.88

Nonverbal IQ

Reading skill �0.013 0.004 0.003

Distribution 0.008 0.004 0.049

Nonverbal IQ 0.000 0.004 0.94

Reading skill * distribution 0.001 0.004 0.89

TABLE VI. Effect of nuisance variables on category boundary.

b SE p

Age

Reading skill 0.054 0.073 0.47

Distribution �0.229 0.064 <0.001

Age �0.042 0.050 0.41

Reading skill * distribution 0.006 0.064 0.92

ADHD

Reading skill 0.053 0.071 0.46

Distribution �0.230 0.064 <0.001

ADHD 0.236 0.179 0.19

Reading skill * distribution 0.007 0.064 0.91

Nonverbal IQ

Reading skill 0.069 0.083 0.41

Distribution �0.230 0.064 <0.001

Nonverbal IQ �0.061 0.084 0.47

Reading skill * distribution 0.007 0.064 0.92
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parameter � readingþ distributionþ reading

� distributionþ ð1jsubject IDÞ: (4)

For the slope, BF01 ¼ 25:6; for the asymptote,

BF01 ¼ 1007:6; for the category boundary, BF01 ¼ 65:4 and

for PC1, BF01 ¼ 32:6. In all cases, the BF indicates consid-

erably stronger evidence for the null model (i.e., no interac-

tion of reading skill and stimulus distribution). By standard

BF reporting, these results would be considered strong to

very strong evidence for the null.

For completeness, we also tested the interaction of read-

ing skill and stimulus distribution with reading skill treated

as a categorical variable (dyslexic versus control). A mixed

effects analysis of variance (ANOVA) with a random effect

of subject was used to evaluate the interaction term, using

the Kenwards-Rogers estimation of degrees of freedom. The

interaction was not significant in a model of the slope

[Fð1; 48:3Þ ¼ 0:051; p ¼ 0:821], the asymptote [Fð1; 62:2Þ
¼ 0:005; p ¼ 0:942], the category boundary [Fð1; 47:9Þ
¼ 0:46; p ¼ 0:830], or PC1 [Fð1; 48:0Þ ¼ 0:0001; p
¼ 0:991]. The estimated Cohen’s d for the separation of

slope by group was 0.43 with a 95% confidence interval

ranging from �0.15 to 1.00; this range is consistent with the

average effect size in a meta-analysis of categorical labeling

studies (Noordenbos and Serniclaes, 2015). For separation

of the asymptote by group, d¼ 0.87 (CI ¼ ½0:27; 1:47�), by

category boundary, d¼ 0.08 (CI ¼ ½�0:50; 0:65�, and for

separation of PC1 by group, d¼ 0.67 (CI ¼ ½0:08; 1:27�).
Altogether, our analyses indicate that from the behav-

ioral responses alone, there is little evidence that poor read-

ers and strong readers are differentially affected by the

stimulus distribution of the categorical labeling task. Our

findings are somewhat complicated by the fact that we did

not find clear evidence for a robust effect of stimulus distri-

bution on categorical behavior; the small main effects on

category boundary and asymptote are difficult to interpret

and not expected from prior literature. To the extent that our

data can speak to the effects of stimulus distribution on task

performance, though, our results do not support a relation-

ship between dyslexia and altered distributional sensitivity

on this particular task.

A. Effects of recent stimulus presentations on
phoneme labeling

Because we collected 420 responses per individual, our

data set may provide sufficient power to examine stimulus

recency effects. To explore this possibility, we employed

the modeling approach of Lieder et al. (2019), which uses

generalized linear models (GLMs) to investigate how recent

stimulus presentations affect the judgment of the current

stimulus’ identity.

For every stimulus presentation in the data set, we

determined the identity of the preceding four stimuli. As in

Lieder et al. (2019), we adopt the following notation.

Let d0 be the stimulus steps (1–7) of the current stimu-

lus presentation, t. Then, d1 is the difference in steps

between d0 and the stimulus presented at trial t – 1.

Similarly, d2 is the difference in steps between d0 and

the stimulus presented at trial t – 2, and so on for values d3

and d4.

The mixed effects GLM specifying the relationship

between the label assigned to the current stimulus presenta-

tion and the recent presentations is as follows:

response ¼ f ðb0 þ b1d0 þ b2d1 þ b3d2 þ b4d3

þ b5d4 þ ð1jsubject IDÞÞ; (5)

where f is the probit link function, b coefficients are linear

weights to be estimated, d0 represents the continuum step of

the current stimulus presentation, and ð1jsubject IDÞ is a

random intercept for subject. The probit was chosen as the

link function because the dependent variable, response, is

binomially distributed—i.e., participants decided whether a

sound was da or not. We note that the probit function con-

tains only two parameters that variously adjust the slope and

category boundary of a sigmoid and, therefore, differences

in the asymptote would have an effect on the estimated

slope.

For the purpose of illustrating this approach clearly, we

begin with an exploration of group differences and then

move on to a model where reading skill is treated as a con-

tinuous variable. We first fit a mixed effects GLM to the

responses of each group (control and dyslexic). The esti-

mated coefficients are compared in Fig. 2.

We can immediately see that stimulus recency effects

exist and (d1–d4) are quite similar between groups. The

coefficient that differs by group is the weighting of d0—in

other words, the mixed effects GLM estimates that the

probit slope is lower in the dyslexic group even when recent

stimulus presentations are accounted for.

Having visualized the group-level differences, we fol-

low up with a treatment of reading skill as a continuous

measure in the GLM. On the basis of our initial exploration,

TABLE VII. Effect of nuisance variables on PC1.

b SE p

Age

Reading skill 0.367 0.161 0.026

Distribution �0.016 0.127 0.90

Age 0.285 0.110 0.013

Reading skill * Distribution �0.013 0.129 0.92

ADHD

Reading skill 0.437 0.163 0.010

Distribution �0.014 0.128 0.91

ADHD �0.605 0.411 0.15

Reading skill * distribution �0.015 0.129 0.91

Nonverbal IQ

Reading skill 0.438 0.192 0.027

Distribution �0.015 0.128 0.90

Nonverbal IQ 0.072 0.194 0.71

Reading skill * distribution �0.013 0.129 0.92
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we drop the terms d3 and d4 from the model as the standard

errors for these point estimates suggest we are underpow-

ered to detect recency effects at this time scale.

First, we consider the mixed effects GLM containing

main effects of d1, d2, d0, and reading skill, plus an interac-

tion of d0 and reading skill. We hypothesized a significant

interaction between reading skill and d0 on the basis of the

previous group-level model. Indeed, the interaction, as well

as the stimulus recency terms, were all highly significant

(Table VIII).

We also tested augmenting our hypothesized model to

include an interaction between reading skill and stimulus

recency terms d1 and d2. Adding a d1 * reading skill interac-

tion increased the Akaike Information Criterion (AIC) from

15 868.8 to 15 869.0 and increased the BIC from 15 925.0 to

15 933.3, and the new interaction term was not significant

(b ¼ 0:007, SE¼ 0.005, p¼ 0.182). We, again, computed

the BF to assess the relative evidence for the presence of an

interaction; we estimated BF01 ¼ 61:9, consistent with

strong evidence for the null. Considering a d2 * reading skill

interaction term fared no better: the interaction was not sig-

nificant (b ¼ 0:0007, SE¼ 0.005, p¼ 0.896), and AIC and

BIC increased (to 15 870.8 and 15 935.0, respectively)

compared to the simpler model. Again, the BF indicated

strong evidence for the null with BF01 ¼ 149:6.

From this investigation of stimulus recency effects, we

find that we are able to detect highly significant effects of

the last two stimulus presentations on judgments of the cur-

rent stimulus’ identity. We did not detect a significant inter-

action of reading skill and the influence of previous stimulus

presentations, and Bayesian analysis provides evidence

against the presence of an interaction. In all, the model

upholds the interpretation that psychometric functions are

steeper in stronger readers regardless of the context in which

each stimulus presentation occurs.

Last, we performed an analysis to characterize the

mechanism by which recently presented stimuli influence

judgments of the current stimulus. We hypothesized that if

the current stimulus was ambiguous—i.e., it was drawn

from the center of the /ba/�/da/ continuum—then the influ-

ence of the previous stimulus would be greatest. In other

words, listeners might make greater use of the contrast

between the current and previous stimuli when the current

stimulus is ambiguous than when the current stimulus is a

clear category exemplar. We tested this hypothesis with

another mixed effects GLM. First, we created a new binary

feature that distinguishes stimuli drawn from the center of

the continuum versus stimuli drawn from the end points,

ambiguous ¼ 0; if d0 2 steps 1; 2; 6; 7½ �;
1; otherwise:

�

We then tested the model

response ¼ f ðb0 þ b1d0 þ b2d1 � ambiguous

þ ð1jsubject IDÞÞ; (6)

where f is a probit function as in Eq. (5). We were specifi-

cally interested in the interaction of d1 and ambiguous: a sig-

nificant interaction indicates that the magnitude of the

difference between the current and past stimulus depends on

whether the current stimulus is a category exemplar or not.

As expected, the interaction of d1 and ambiguous was signif-

icant (b ¼ 0:085, SE ¼ 0:007; p < 0:001). This analysis

upholds the intuition that previous trials influence the pre-

sent judgment by providing a contrast by which to judge

ambiguous stimuli. If this is indeed the primary mechanism

by which stimulus recency effects influence performance on

the categorization task, then our study is not alone in finding

a lack of interaction between reading skill and such contex-

tual effects: Blomert and Mitterer (2004) also found no evi-

dence for context effects at several linguistic scales in a

phoneme labeling task like ours.

B. Quantifying fatigue during the task

The relatively large number of trials collected per sub-

ject allows us to revisit an analysis proposed by Messaoud-

Galusi et al. (2011) to determine whether poor readers show

precipitous declines in task performance as the study goes

FIG. 2. (Color online) Estimates of coefficients from a mixed effects gener-

alized linear model (GLM) fit to group behavioral data. Bars indicate the

95% confidence interval surrounding a given estimate.

TABLE VIII. Hypothesized model of behavioral response.

b SE p

Reading skill 0.002 0.034 0.95

d0 * Reading skill 0.132 0.006 <0.001

d0 0.633 0.010 <0.001

d1 0.035 0.005 <0.001

d2 �0.049 0.005 <0.001
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on. If poor readers become fatigued or distracted at a faster

rate than strong readers do, that could explain overall differ-

ences in task performance.

To this end, we modeled the probability of correctly

labeling a clear ba or da exemplar as a function of the trial

number and reading skill (Fig. 3). Note that clear category

exemplars are stimuli drawn from the two ends of the con-

tinuum (steps 1 and 7). Having already established that poor

readers produce shallower psychometric functions overall,

we should expect that the probability of correctly labeling

these tokens will be lower overall in poor readers. If an

interaction of trial number and reading skill is found to be

significant, that would suggest task fatigue occurs differen-

tially across the spectrum of reading skill.

Once again, we used a mixed effects GLM with the sub-

ject as a random effect (as each subject participated in two

test conditions, each with 210 trials). The dependent vari-

able was accuracy on labeling an end point of the contin-

uum, which was coded as 1 or 0. The model included a main

effect of trial number, a main effect of reading skill, and an

interaction of the two. Trial number and reading skill were

scaled and centered prior to modeling. The results of this

analysis are provided in Table IX.

While there was a significant interaction of reading skill

and trial number, the direction of this effect is actually oppo-

site what we might have predicted—greater reading skill is

associated with a more deleterious effect of trial number on

accuracy. Inspection of our data reveals that this trend is

strongly influenced by one particular subject in the dyslexic

group who began with nearly chance accuracy and became

more accurate over the course of the task. When we

removed this subject from the model, the magnitude of the

interaction effect more than halved (b went from �0.044 to

�0.018) and the interaction was no longer significant

(p¼ 0.397).

We also considered reaction time as a measure of the

task engagement. Looking again at the continuum end

points, we selected reaction times between 200 ms and 3 s

(to remove spurious responses and outliers as in O’Brien

et al., 2018) and log-transformed these observations. The

model of reaction time is given in Table X. Faster reaction

time is associated with stronger reading skills (replicating

O’Brien et al., 2018). However, we did not detect a signifi-

cant interaction between trial number and reading skill.

As such, our results do not corroborate the idea that

poor readers are especially prone to becoming disengaged,

distracted, or tired during the task—at least by our proposed

measures of engagement.

IV. DISCUSSION

It is well established that phoneme categorization is

related to reading skill, but there are a variety of explana-

tions for this relationship. We considered how the frequency

distribution from which stimuli are drawn during a standard

phoneme labeling task might deferentially affect task perfor-

mance in children with dyslexia versus task performance in

typical readers. Indeed, some authors have posited that dif-

ferences in psychophysical task performance may, in some

situations, actually reflect a difference in an individual’s

sensitivity to task distributions (i.e., the distribution of the

stimuli). Because our task did not appear to induce the sort

of changes in psychometric functions that other authors

have noted (such as slope), it is challenging to draw direct

comparisons between our results and others (e.g., Clayards

et al., 2008; Vandermosten et al., 2018). However, insofar

as we detected some effect of the stimulus distribution sta-

tistics on aspects of task performance—where listeners draw

a category boundary and a slight tendency to make more

labeling errors of clear stimuli—we do not find evidence

that the effect differs in children with dyslexia.

There are several reasons why we may not have seen

the same effects of stimulus distribution as other authors:

unlike in the study of distributional learning in children with

and without reading disability by Vandermosten et al.
(2018), we used a native-language contrast that may have

been overlearned by our participants prior to our study. If

FIG. 3. (Color online) Each point represents the average accuracy within a

group in a certain interval of the task. Error bars mark the 95% confidence

interval of the mean. The x axis marks progress through the task: 10%

marks the first 21 of 210 trials, 20% marks trials 22–42, and so on. Dark

lines indicate the best fit regression line.

TABLE IX. Model of accuracy labeling continuum end points.

b SE p

(Intercept) 1.672 0.067 <0.001

Trial �0.103 0.022 <0.001

Reading skill 0.264 0.067 <0.001

Trial * reading skill �0.044 0.021 0.037

TABLE X. Model of reaction time labeling continuum end points.

b SE p

Trial 0.007 0.004 0.053

Reading skill �0.053 0.014 <0.001

Trial * reading skill 0.003 0.004 0.49
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this explanation were true, it would imply that children with

dyslexia are entirely equipped to leverage statistical learning

to establish phonetic categories from their natural environ-

ment (although we cannot rule out that they may do so to a

lesser degree than their typically developing peers).

However, there is evidence from the literature against this

interpretation: even in typically developing children, identi-

fication functions produced by categorizing stop consonants

do not fully resemble those of adults (Hazan and Barret,

2000, showed this in children aged 6–12 years, and

McMurray et al., 2018, largely replicated the finding in ado-

lescents up to age 18 years). These findings argue that even

native-language contrasts are unlikely to be fully learned by

age 12 years, the oldest child in our study.

Another potential explanation for our differing results

from previous reports is that our measurements may not

have been sufficiently precise: Clayards et al. (2008)

detected stimulus distribution effects on psychometric func-

tion shape for a native-language contrast in adults using

eye-tracking to recover a time-series measure of looks to a

closed set of choices displayed on a screen. We do not have

access to a similarly fine-grained measure.

Our data set also allowed us to apply the modeling

approach of Lieder et al. (2019) to investigate how previous

stimulus presentations affect judgments about the current

stimulus. We were able to detect effects of the previous two

stimulus presentations but, critically, did not find that these

effects interacted with reading skill. In other words, people

with dyslexia show worse overall phoneme categorization

performance but equivalent stimulus recency effects com-

pared to people with typical reading skills. Our results are

broadly consistent with the findings of Lieder et al, which

showed that stimulus recency effects were similar in adults

with and without dyslexia (albeit in a task involving the

judgment of tone frequency differences).

For stimulus recency effects to be intact in children

with dyslexia, it seems necessary that at least one aspect of

sensory encoding is intact—if stimuli were not encoded

with sufficiently high fidelity, it is difficult to imagine that

children would be sensitive to differences between previous

and current presentations. However, because we do not yet

rigorously understand the neural or perceptual basis of cate-

gorical labeling, it is difficult to extend these results to

understanding the quality of neural encoding involved in

categorical decision-making. Thus, while our results indi-

cate at some perceptual level that speech encoding is similar

between groups, more work is needed to connect our find-

ings to the broader debate about sensory encoding in dys-

lexia (Casini et al., 2018; Goswami, 2011; Hancock et al.,
2017). At this point, our results can mainly be taken to con-

tradict claims that adaptation or anchoring to recent stimuli

is different in children with dyslexia (Ahissar et al., 2006;

Jaffe-Dax et al., 2017; Krause, 2015; Nicolson and Fawcett,

2018; Perrachione et al., 2016).

Finally, we tested whether children with dyslexia

showed signs of increased fatigue during the task by analyz-

ing their performance on relatively easy trials throughout

the course of the experiment. Although individuals with dys-

lexia showed a tendency to make more errors on “easy” tri-

als throughout the experiment, we did not find evidence to

suggest that they were merely becoming less attentive over

time as Messaoud-Galusi et al. (2011) did in a similar task.

It is possible that our results differ because we allowed chil-

dren a brief break (typically less than one minute) every 35

trials, whereas participants in the study by Messaoud-Galusi

and colleagues adhered to a different schedule.

Additionally, our participant demographics may have dif-

fered as many of our children are well-accustomed to com-

puter games at home and at school. While we are, therefore,

cautious to generalize our results broadly, we can conclude

that task fatigue is unlikely to explain the patterns of cate-

gorical labeling we present here. This may be reassuring

with regard to the large amount of literature on categorical

labeling in individuals with dyslexia: while experimenters

must remain vigilant of ways that overall decreased accu-

racy can bias measures of task performance (Roach et al.,
2004; Wichmann and Hill, 2001), our results suggest that a

simple explanation of task engagement alone is unlikely to

account for the entire relationship between reading and cate-

gorical labeling.

Considering our results and the current state of the field,

we believe researchers are at an intriguing moment: there is

compelling evidence that in certain experiments apparent

deficits in groups of participants with dyslexia are well-

explained by nonlinguistic and non-sensory mechanisms

(Banai and Ahissar, 2004, 2006; Gabay et al., 2015), and

this framework has considerably more power to explain the

diversity of deficits associated with reading disability than

purely sensory or phonological models. Still, there are con-

siderable gaps in this explanation: not only are there are

experimental contexts where individuals with dyslexia

appear to have no statistical learning deficit (Du and Kelly,

2013; Gabay and Holt, 2018; Gould and Glencross, 1990;

In�acio et al., 2018; Jim�enez-Fern�andez et al., 2011; Samara

and Caravolas, 2017; Staels and Van den Broeck, 2015; per-

haps reflecting ongoing vagueness in what “statistical

learning” encompasses) but effect sizes in studies that do

detect group differences are still too small to accurately sep-

arate most cases of dyslexia from typical reading (Lieder

et al., 2019; Vandermosten et al., 2018).

Even if we take the view that reduced categorical label-

ing in struggling readers is entirely the consequence of

impaired sensitivity to phonetic categories over the course

of many years of language exposure, group separability

would remain quite modest: the average effect size in cate-

gorical labeling studies is 0.66 (Noordenbos and Serniclaes,

2015), meaning that only 9.7% of individuals with dyslexia

would fall below the 95% confidence interval of the control

population. A further problem for the statistical learning

hypothesis is that it often relies on an assumption that a very

subtle impairment can cascade to have drastic effects on lit-

eracy by disrupting the development of typical phonological

processing. However, a growing body of literature (Booth

et al., 2000; Calcus et al., 2018; O’Brien et al., 2018;

J. Acoust. Soc. Am. 148 (4), October 2020 O’Brien et al. 2219

https://doi.org/10.1121/10.0002181

https://doi.org/10.1121/10.0002181


Robertson et al., 2009; Snowling et al., 2019; Talcott et al.,
2000) suggests that a cascading model is inadequate: perfor-

mance on psychophysical tasks can relate to reading skill

separately from the proposed phonological processing medi-

ation pathway. It may be that the categorical labeling task is

an index of something far broader than phonological aware-

ness, picking up on other aspects of developmental and lin-

guistic experience.

Sharpening of category boundaries may be partially a

result of reading experience itself. In this hypothesis, the

acquisition of reading—and spelling skills, in particular—

may create or reshape the representation of sound categories

(Dich and Cohn, 2013). This hypothesis has been consider-

ably understudied and would best be addressed via careful

intervention studies in which category boundaries may be

assessed before and after literacy training.

With that said, considering the results of the present study

in conjunction with previous results from our group (O’Brien

et al., 2018; O’Brien et al., 2019), we are hesitant to recommend

the phoneme categorization task for future research. While these

psychometric functions are reliably correlated with reading skill

in our laboratory and many others, our ability to interpret them

with regard to a mechanistic view of reading development is

limited. As we have discussed, it is challenging to disambiguate

sensory factors from broader aspects of language and cognitive

development using these behavioral results. Further, it is not

obvious how to extend behavioral results from this narrow

experimental context to speech perception “in the wild” (Holt

and Lotto, 2010). Seeing as this task has a long history as a

probe for speech perception in reading-impaired populations dat-

ing back to the early 1980s (Noordenbos and Serniclaes, 2015),

we are eager for researchers to develop new experimental para-

digms that are guided by our field’s maturing understanding of

speech perception. For example, statistical methods and experi-

mental tools have sufficiently advanced that researchers can con-

sider time-series measures of behavioral responses (such as eye-

tracking, as in McMurray et al., 2018) and naturalistic,

sentence-length stimuli incorporating talker variability. It is

more possible than ever to create tasks that both resemble etho-

logical speech perception and afford fine experimenter control,

and we encourage researchers guided by mechanistic hypotheses

to think beyond phoneme identification.

In summary, our results are consistent with the perspec-

tive that multiple causal routes relate performance on vari-

ous behavioral and psychophysical measures to reading skill

(Pennington et al., 2012; Ziegler et al., 2019). Under this

model, deficits in learning category boundaries from speech

sounds may be one of many factors that contribute to diffi-

culties with reading—or, potentially, a consequence of

developmental literacy challenges (Dich and Cohn, 2013).

In light of this, we are most optimistic toward future

research that explores how constellations of risk factors

(Pennington et al., 2012; Schatschneider et al., 2016;

Spencer et al., 2014), including but not limited to reduced

category learning, phonological processing, and sensitivity

to the statistics of nonlinguistic stimuli, act in concert to

determine a child’s reading skill.
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