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Abstract
Models of diffusion MRI within a voxel are useful for making inferences about the properties

of the tissue and inferring fiber orientation distribution used by tractography algorithms. A

useful model must fit the data accurately. However, evaluations of model-accuracy of com-

monly used models have not been published before. Here, we evaluate model-accuracy of

the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summa-

rizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM)

summarize the signal as a sum of signals originating from a collection of fascicles oriented

in different directions. We use cross-validation to assess model-accuracy at different gradi-

ent amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all

the white matter voxels in one data set and then use the model to predict a second, indepen-

dent data set. This is the first evaluation of model-accuracy of these models. In most of the

white matter the DTM predicts the data more accurately than test-retest reliability; SFM

model-accuracy is higher than test-retest reliability and also higher than the DTMmodel-ac-

curacy, particularly for measurements with (a) a b-value above 1000 in locations containing

fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM

also has better parameter-validity: it more accurately estimates the fiber orientation distribu-

tion function (fODF) in each voxel, which is useful for fiber tracking.

Introduction
Diffusion-weighted imaging (DWI) using MR has enormously expanded our understanding of
the structures and connections in the living human brain. The interest in this technology has
given rise to a wide array of efforts to model the DWI signals. The purpose of these models is
to clarify the biological structures that determine the signal. Based on these models,
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investigators make inferences about local tissue properties such as the orientation [1–3] coher-
ence [4,5], and axon size-distribution [6,7] of white-matter fiber bundles (or fascicles).

Model evaluation
There are a large number of models of the diffusion signals measured within a voxel (reviewed
in [8]), and there are several different approaches to assessing the value of these models. In one
approach, investigators assess whether the model parameters provide useful information about
specific aspects of the underlying biological tissue (parameter-validity). Parameter-validity is
assessed by comparing parameter estimates with known anatomy, or by using phantoms con-
structed with specific parameters.

Models can also be evaluated by measuring parameter-reliability. One way to assess parame-
ter-reliability is to compare the estimates across plausible noise levels, say the noise that arises
across repeated measurements. A second way is to measure the effect of changes in the MR ac-
quisition parameters. A substantial literature examines the parameter-reliability of common
diffusion models [9–12] and particularly for differences in measurement parameters, such as
the number of diffusion-weighting directions [13,10].

A third evaluation asks how accurately the model fits the measured signal (model-accuracy).
Surprisingly, this aspect of the models has not been assessed extensively before (see Table 1).
Model-accuracy differs from both parameter-validity and parameter-reliability. For example,

Table 1. Previous approaches to model evaluation.

Publication Experimental
preparation

Instrument and conditions Model evaluation method Note

Alexander, Barker
and Arridge, 2002
[25]

Human 60 DW directions 1.7 x 1.7 mm
inplane 2.5 mm throughplane Field
strength not mentioned (assuming
1.5T)

F-tests comparing nested
models of the fit

Model-accuracy

Jones, 2003 [9] Human Field strength = 1.5 T 64 directions
resolution = 2.5 mm3 isotropic

Confidence interval in
repeated estimates of the
PDD of a diffusion tensor.

Parameter-reliability

Tuch et al. 2004
[24]

Human Field-strength = 3T
Resolution = 3.125 x 3.125 x 3.1 mm3

126 directions b-value = 1077

RMSE of the DTM signal
relative to the measured
signal (Eq 5)

Fig 5 in this paper shows that the DTM
does not model the signal well in
voxels in which the signal is oblate (an
estimate of model-accuracy)

Chang et al. 2005
[61]

Simulation Accurate recovery of the
simulated FA

Parameter-validity

Chung et al. 2006
[11]

Simulation Accurate estimation of the
variability of DTM-derived
measures

Parameter-validity

Koay et al. 2006
[38]

Simulation Chi-square distribution and
error in estimating the
trace of a simulated tensor
sigal

Parameter-validity

Whitcher et al.
2008 [12]

Simulations and
human DTI
measurements

3T Reliability of DTI-derived
measures assessed by
means of the wild
bootstrap.

Parameter-reliability

Tournier et al.
2008 [50]

Phantom, 20 and 90
um fused silica
tubing

9.4T spectrometer 25/32 mm inplane
3.6 mm through-plane b-value = 8000

Phantom direction
recovery.

Parameter-validity

Panagiotaki et al.
2012 [8]

Rat corpus callosum 9.4T small bore spectrometer 2mm/
256 (80 microns inplane) thickness
500 microns 5 directions

Bayesian Information
Criterion of fits across
many pulse sequence
types

Model-accuracy

doi:10.1371/journal.pone.0123272.t001
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parameter-reliability can be very high, but the model-accuracy may be very low. Consider a
model that estimates a single parameter from the data, the sample mean. The parameter-reli-
ability can be quite good if there are many samples. But the model-accuracy will be low if there
is significant variance in the data.

One of the main challenges in building accurate models is to find a balance between error
due to bias and error due to variance (known as the bias-variance tradeoff [14]). This tradeoff
is intimately tied to the model complexity. Some models have a low level of complexity (few pa-
rameters). These models may underfit the data, because they do not have sufficient flexibility to
capture the variation in the diffusion signal with the direction of measurement (Fig 1). Models
with high complexity (many parameters) may overfit the data. These models capture the varia-
tion in the diffusion signal but they also capture the variation due to noise.

To limit the effects of overfitting on our inferences, we can compare model predictions to a
second data set with independent noise samples (cross-validation). Specifically, we fit a model
to a first data set and then measure model-accuracy in predicting a second independent mea-
surement. In this paper we illustrate how to measure model-accuracy for diffusion-weighted
imaging data used to understand human white matter. There are many different models of
within-voxel diffusion, and the number of ideas continues to expand. It is impractical to evalu-
ate model-accuracy for all models, and thus our goals here are to (a) explain the ideas, (b) apply
them to two of the most widely used diffusion models, and (c) make available software and data
so that other investigators can apply our model-accuracy methods easily to other models.

Diffusion models
Amodel with only a few parameters (low level of complexity) is the diffusion tensor model
(DTM [15]). It approximates the data as a 3-dimensional Gaussian diffusion process. The model
continues to be used in tractography algorithms [16], in diagnosing clinical conditions [17], and
in characterizing behavioral variability [18–20]. Despite its widespread use, there have been no
comparisons of the DTM fits with whole-brain diffusion data collected on a standard clinical
scanner (see Table 1 for a list of other evaluations of DWI models available in the literature).

Fig 1. The diffusion-weighted signal attenuation measured in a voxel in the corpus callosum. The
columns show data obtained at three different b-values. (Top row) Diffusion data: The signal is interpolated
on the sampling sphere. Note the differences in the spatial distribution of the signal on the sphere between
the measurements obtained using different b-values. (Bottom row) DTM diffusion signal predictions: A tensor
model is fit separately to the data at each b-value. The surface shows the signal predicted by the model in
each direction.

doi:10.1371/journal.pone.0123272.g001
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When the DTM was introduced, it was thought that the principal diffusion direction (PDD)
of the tensor was a useful estimate of the unique orientation of fascicles, within each voxel. In
fact, the PDD is not a good estimate of the local fiber direction [21–24]. For example, crossing
fascicles oriented in two different directions may generate a diffusion signal whose principal
diffusion direction is intermediate to the two directions, agreeing with neither fiber [25,26].
This emphasizes the importance of parameter-validity: even if the model fits the data well, re-
searchers need to take care when interpreting the parameters of the model.

More modern models of the data increase the complexity to improve parameter-validity.
They do so by adding additional parameters and going beyond the Gaussian assumption of the
DTM. These additional parameters can have a variety of interpretations, and in a subset of
these models, investigators interpret them as an explicit model that allows multiple fascicle ori-
entations in a single voxel [1,3,22,23,27,28] These models contain very large numbers of model
parameters. Each voxel is modeled as the sum of an isotropic signal and the weighted sum of
signals from a set of fascicles at different orientations.

There is much in common among a subset of this new generation of models. First, they
make explicit estimates of the number and volume of the fascicles in various directions from
the DWI data. Second, they all use some means to control for the noise due to variance, and
over-fitting, by means of regularization [14]. The main methods all limit the number of fasci-
cles in the estimated solution, and for this reason we refer to this new generation of models as
sparse fascicle models (SFM).

The DTM and SFMmodels have been assessed for parameter-reliability, but not model-ac-
curacy [3,9,11,12,27–29]. That is, researchers often demonstrate how repeatable the fascicle di-
rection estimates are for different acquisitions of the same data set, or for simulations in which
a particular set of fascicle directions has been entered. But, accuracy (quantified as R2, good-
ness-of-fit, prediction error, etc.) is not generally reported and there is no accepted methodolo-
gy to evaluate the accuracy of the model fit.

We implemented a cross-validation framework for evaluating model-accuracy of the DTM
and SFM diffusion models. We measured model-accuracy using diffusion data obtained with
several b-values and high angular resolution, (Fig 1, top row). We compared model-accuracy
to the repeatability of the measurements in a replication (test-retest reliability). As an example,
we show the DTM fit to the diffusion data in Fig 1 (bottom row). Clearly, the DTM does not fit
all of the details in the measurements. The question we ask is whether these details in the data
are reliable and should be fit, or whether they should be treated as noise.

Methods

Subjects
Subjects were six healthy male participants, ages 27–40 (mean: 32.6). All data are available to
download (see Table 2). The Stanford University Institutional Review Board approved the ex-
perimental procedures and participants provided written informed consent.

Diffusion-weighted MRI
MRI data were collected at Stanford’s Center for Cognitive and Neurobiological Imaging on 3T
GE Discovery MR750 MRI system. A 32-channel head coil was used. A twice-refocused spin
echo diffusion-weighted sequence [30] was used with several different acquisition schemes.
Two participants were scanned with 150 different directions of diffusion-weighting. The spatial
resolution of the measurement was 2x2x2 mm3. In different scans, b-values were set to 1000,
2000 and 4000 s/mm2 and respectively, TE values were: 83.1/93.6/106.9 msec. Ten non-diffu-
sion weighted images (b = 0) were acquired at the beginning of each scan. Two scans were
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performed in each b-value in immediate succession. Data at a b-value of 2000 were collected in
one session and data at a b-value of 1000 and 4000 were collected in a separate session. All 6
participants were also scanned in a sequence with 96 diffusion-weighting directions at a higher
spatial resolution of 1.5 x 1.5 x 1.5 mm3. In this sequence only one b-value was used: 2000 s/
mm2 (TE = 96.8 msec). Ten b = 0 images were acquired at the beginning of each scan. Two sets
of images were acquired in immediate succession. To mitigate the effects of EPI spatial distor-
tions, measurements of the B0 magnetic field were performed in the high-resolution protocol.
Field maps were collected in the same slices as the DWI data using a 16 shot, gradient echo spi-
ral trajectory pulse sequence. Two volumes were successively acquired, one with TE set to
9.091 ms and one with TE increased by 2.272 ms, and the phase difference between the vol-
umes was used as an estimate of the magnetic field. To track slow drifts in the magnetic field
(e.g., due to gradient heating) field maps were collected before and after the DWI scans and be-
tween successive DWI scans. See Table 2 for a summary of the data.

Pre-processing
MR images were motion corrected to the average b = 0 image in each scan, using a rigid body
alignment algorithm, implemented in SPM (http://www.fil.ion.ucl.ac.uk/spm/). The direction
of the diffusion-gradient in each diffusion-weighted volume was corrected using the rotation
parameters from the motion correction procedure. Because of the relatively long duration be-
tween the RF excitation and image acquisition in the twice-refocused spin echo sequence used,
there is sufficient time for eddy currents to subside. Hence, eddy current correction was not ap-
plied. All pre-processing steps have been implemented in Matlab as part of the mrVista soft-
ware distribution [31] which can be downloaded at http://github.com/vistalab/vistasoft. In the
high-resolution protocol (1.5 mm isotropic), field maps were smoothed in space and time
using local linear regression and these smoothed maps were used to unwarp the diffusion-
weighted volumes, correcting for spatial distortions due to drifts in the main (B0) field [32].

Anatomical MRI and tissue type segmentation
Segmentation of different types of tissue was performed on high-resolution T1-weighted
image. Two FSPGR images were acquired at 0.7x0.7x0.7 mm3 resolution and averaged to in-
crease SNR of tissue contrast. An initial segmentation was performed using Freesurfer [33]
and additional manual editing of the segmentation was then performed using itkgray [34].
The white-matter mask image was resampled to the DWI data resolution. To prevent system-
atic bias in voxels that are classified as white matter but contain partial volumes of CSF or of
GM, we excluded voxels that have a mean diffusivity larger than 2 inter-quartiles from the
median of the mean diffusivity distribution across the entire T1-defined white matter mask
[35]. This segmentation process was based on the data in the b = 1000 measurement for the
2x2x2 mm3 protocol.

Table 2. Data-sets analyzed.

Diffusion weighting
(b-value)

Spatial resolution # diffusion directions # subjects URL for download Duration

1000 2 x 2 x 2 mm3 150 2 http://purl.stanford.edu/ng782rw8378 19:03

2000 2 x 2 x 2 mm3 150 2 http://purl.stanford.edu/ng782rw8378 20:56

4000 2 x 2 x 2 mm3 150 2 http://purl.stanford.edu/ng782rw8378 22:53

2000 1.5 x 1.5 x 1.5 mm3 96 6 (this includes the 2 subjects
in the other data sets)

http://purl.stanford.edu/rt034xr8593 39:03

doi:10.1371/journal.pone.0123272.t002
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The diffusion signal
To quantitatively describe the diffusion signal, we use the classical formulation proposed by
Stejskal and Tanner [36]: the signal measured in every voxel in the brain in a spin echo experi-
ment, may depend on the application of a second (diffusion) gradient. Suppose that the non-
diffusion weighted signal in a voxel is S0 and the signal measured with the application of a dif-
fusion weighting gradient in the direction θ is Sb(θ). The strength of the applied diffusion gra-
dient, the duration of these gradients and the time interval between them are experimenter-
controlled variables and will all affect the sensitivity of the measurement to diffusion in the
measured volume. These are all summarized in one number: b [37]. The decline in signal with
diffusion weighting, which results in the relative diffusion-weighted signal,S(θ, b) = Sb(θ)/S0 is
well-described by a decaying exponential function [36]:

Sðy; bÞ ¼ e�bAðyÞ ð1Þ
Where S(θ, b) is the relative signal measured when the diffusion-sensitizing gradients are ap-
plied in the direction θ with the parameters (magnitude, duration, etc.) b (see Fig 1, top row).
The apparent diffusion coefficient, A(θ), is a direction-dependent quantity that depends on the
hindrance of the diffusion of water in the direction of the applied gradient by elements of the
tissue, such as cell membranes.

The diffusion tensor model (DTM)
The diffusion tensor model (DTM; Basser et al., 1994) predicts the apparent diffusion coeffi-
cient in every direction as:

AðyÞ ¼ ytQ y ð2Þ
where θ is a unit vector in the direction of the applied diffusion gradient and Q is a positive-
definite quadratic form.

To fit the DTM we compared ordinary least-squares and weighted least-squares fitting [11],
both conducted on log(S(θ, b)) and non-linear least-squares fitting [38], conducted on S(θ, b).
All these fit methods are implemented in the freely-available dipy software library (http://nipy.
org/dipy [39]). For these data, the three methods produced very similar parameter estimates
and cross-validation goodness-of-fit (see Model Evaluation). Below, we present model fits ob-
tained with the weighted least-squares method.

The sparse fascicle model (SFM)
The family of sparse fascicle models (SFM) follow the principles first proposed by Frank
[22,23]. These models have since evolved in the work of Behrens et al. [1], Dell’Acqua et al. [3]
and Tournier et al. [28,27]. These models treat each MRI voxel as comprising two types of
compartments: (a) non-oriented tissue that gives rise to an isotropic diffusion signal that is
constant across measurement directions, and (b) a set of oriented fascicles of various volume
fractions, with each fascicle giving rise to an anisotropic diffusion signal. The diffusion signal is
modeled as the sum of the signals from these compartments [1]:

Sðy; bÞ ¼ boe
�bD

XF

i¼1

bie
�bytQiy ð3Þ

The weight β0 represents the fraction of the voxel that is occupied by isotropic components
with an apparent diffusivity, D. This term depends on many factors (such as the partial volume
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of cerebrospinal fluid in the voxel, the distribution of sizes of cellular components in the voxel,
etc.). The weights βi are weights on individual putative fascicles in the voxel (where F is the
number of these compartments). Each of the anisotropic components in all voxels is assumed
to be well-represented by the response function of a canonical tensor that is used as a kernel
function in all of the white matter [3,27,40–42]. In the work of Behrens et al. [1], the kernel has
a specific form (axial diffusivity equal to 1 and radial diffusivities both equal to 0). Another ap-
proach, which we adopt, is to estimate the form of the kernel from the data [27]. Specifically,
we estimated a kernel for each scan and each subject from a region of interest (ROI) in the cor-
pus callosum (CC). The CC was chosen because it contains axons oriented in a single direction,
and thus approximates the kernel function. The ROI was defined using an automated method,
which selects voxels based on the direction of the principal diffusion direction (left-right), high
FA (>0.4), a target MD range (between 0.7 mm2/s and 1.1 mm2/s) and uniformity of the b = 0
signal across the population of voxels in the estimated position of the CC [39,43]. The 250
most linear voxels in the CC ROI were identified and the median axial and radial diffusivity in
this collection was chosen to represent the axial and radial diffusivities in the canonical tensor.

Eq 3 can be rewritten to better distinguish the isotropic and anisotropic components of the
signal. First, we calculate the direction-dependent deviation of the signal, removing the mean
of the fiber response function modeled by the canonical tensor.

Oiðy; bÞ ¼ e�byt Qiy � mi

where : mi ¼
1

T

X T

j¼1

bie
�bytj Qiyj

ð4Þ

The Oi term is the fiber orientation modulation (fOM). This is the directionally-dependent
signal from a single estimated fascicle with tensorQi. The tensorQi is a rotated version of the
canonical tensor and models a single coherent population of white matter fibers. The
quantity μi approximates the mean signal (across measurement directions, j = 1. . .T), which is
independent of i. The computed value of μi varies by<0.5% between different i, due to the dis-
crete sampling of the sphere. The variation is very small, because the sampling density is suffi-
ciently high. Hence we drop the subscript on μ in the following.

Using simple algebraic manipulations, we can rewrite Eq 3 into the sum of one anisotropic
term and a set of fOM terms:

Sðy; bÞ ¼ boe
�bD

XF

i¼1

ðbie
�bytQiy þ m� mÞ

¼ boe
�bD þ m

XF

i¼1

bi

" #
þ

XF

i¼1

bi Oi

¼ W0 þ
XF

i¼1

bi Oi

ð5Þ

For any fixed b value, the termW0 in Eq 5 is constant, independent of direction. The fOM
terms, Oi(θ), are zero-mean. Thus, W0 is equal to the mean of S(θ) across directions, which we
denote ?̄S. Re-expressing the isotropic component as the mean signal and rearranging terms,
we can rewrite Eq 3 as:

SðyÞ � �S ¼SF

i¼1 bi Oi ðyÞ ð6Þ

We estimate the weights, βi from the diffusion signal in a voxel using Eq (6).
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Matrix representation of the SFM
In this section we introduce and solve a matrix representation of Eq 6. Every voxel contains an
isotropic component and a set of anisotropic components. As shown above in Eqs 5 and 6, the
isotropic component is equal to the mean of the signal.

The contributions of F anisotropic components are fit solving a linear regression problem,
which we express in matrix form:

Sðy1Þ � �S

Sðy2Þ � �S

..

.

SðyTÞ � �S

0
BBBBB@

1
CCCCCA ¼

O1ðy1Þ O2ðy1Þ

O1ðy2Þ O2ðy2Þ
� � �

OFðy1Þ

OFðy2Þ
..
. . .

. ..
.

O1ðyTÞ O2ðyTÞ � � � OFðyTÞ

0
BBBBBB@

1
CCCCCCA

b1

b2

..

.

bF

0
BBBBBBB@

1
CCCCCCCA

ð7Þ

Where the columns Oi(θj) denotes the fOM of the ith fascicle (i = 1. . .F), in the jthmeasurement
direction (θj, j = 1. . .T). We express the Eq (7) concisely as s = Xβ, where β is the weight vector
(F elements), s is the mean-removed relative signal vector (T elements) and X is the regression
matrix (T x F elements).

Solving the SFM equations
We would like a sparse solution to Eq (7). Specifically, we would like to choose the minimal
number of fascicles that best represent the data observed. We obtain this sparse solution and
control for over-fitting using Elastic Net [44]. By requiring a sparse solution, it is straightfor-
ward to solve the under-determined equation in which the number of columns (fascicles) ex-
ceeds the number of rows (measurement directions; F> T).

The Elastic Net algorithm solves s = Xβ for β, while minimizing the following penalty:XT

i¼1

ðSi � ŜiÞ2 þ l
XF

j¼1

ðab2

j þ ð1� aÞjbjjÞ ð8Þ

The first term is the sum of squared error between the measured signal, S, and the model-es-

timated signal, Ŝ; the second term contains two regularization components (Elastic Net penal-
ty; (Zou and Hastie, 2005)). The first component penalizes for the sum of the squares of the
weights (L2 norm) and the second penalizes for the sum of the absolute value of the weights
(L1 norm). The scalars λ and α are regularization parameters. Setting a high value of λ induces
a solution that conforms more to the regularization constraints at the cost of reducing the fit to
the data. The parameter α varies between 0 and 1: when α = 0, the algorithm provides a solu-
tion equivalent to that provided by the Lasso algorithm [45] and penalizes the weights in β by
an L1-norm. When α = 1 the algorithm is equivalent to ridge regression (also known as Tikho-
nov regularization; [46]) and penalizes the weights in β by an L2-norm. Values of α between
these two values emphasize one or the other. We chose the values of λ and α that provided the
smallest median cross-validated error (across voxels in the white matter) in predicting the dif-
fusion data (see S1 Fig).

Model accuracy
To estimate model-accuracy, we compute the goodness of fit between the prediction of a model
and the measurement. To estimate the difference between two sets of measurements, or
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between a measurement and a model prediction, we use a root mean square error (RMSE) met-
ric

RMSEðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

i¼1
ðxi � yiÞ2

T

vuut
ð9Þ

Where x and y are two different measurements in a white matter voxel or a measurement and a
model prediction in that voxel over all the diffusion weighted directions θi (T = 150 directions
in our measurements).

To estimate the goodness-of-fit of a model we use cross-validation. Specifically, we estimate
the parameters of the model on one set of data; we then use the model parameters to predict
the signal in a second, independent data set. We use RMSE of the signal as a measure of model
accuracy. We further assess model-accuracy by comparing the model RMSE to the RMSE of re-
peated measurements: test-retest reliability. DWI data was collected twice in each b-value and
test-retest reliability is calculated as the RMSE between the two measurements in each voxel
across directions of measurement. RMSE is given in the units of the measurement. In the case
of MRI data, these are the scanner signal units, which do not have a straightforward physical
interpretation. Thus, it is difficult to compare RMSE values across different locations in the
brain and across different measurement parameters. The distribution of RMSE of test-retest re-
liability is very similar across b-values (see Results, Fig 2). We speculate that this indicates that
the noise arises principally from sources that are independent of the diffusion itself, including
subject motion, thermal changes in the scanner equipment, and physiological noise. Neverthe-
less, RMSE does not provide a natural benchmark. Less error is better, but it is not clear how
small of an error is good enough.

To create a meaningful measure, we normalize the RMSE of the model prediction on a second
data set to test-retest reliability. That is, we normalize to the RMS of the difference between the
two measurements (test-retest reliability). We compute a measure of relative RMSE (rRMSE):

rRMSE ¼ ðRMSEðM1;D2Þ þ RMSEðM2;D1ÞÞ
2RMSEðD1;D2Þ ð10Þ

whereD1 is the diffusion-weighted signals measured in the first data set andM1 are the signals
predicted from the model fit to this data, and similarly for the second data set,D2. The measure
provides us with an index of the goodness-of-fit of a particular model, relative to the reliability of
the measurement.

The denominator in Eq 10 is an indication of test-retest reliability. If a model is exactly as ac-
curate as test-retest reliability, the numerator is identical to the denominator, and rRMSE has
an expected value of 1. This is the goodness-of-fit of the null model that the data will repeat it-
self exactly. If a model has higher model-accuracy than test-retest reliability, RMSE is smaller
than the denominator in Eq 10, and rRMSE is less than one. This means that the model predicts
the replication measurement more accurately than the original data would (more accurate than
test-retest reliability). Hence, this measure provides a natural quality scale for models fit to dif-
ferent data: when the value of rRMSE is smaller than 1, the model is more accurate than test-re-
test reliability. For the simple case of IID signals, with zero-mean Gaussian noise and standard
deviation, σ, if the model M perfectly predicts the data, the rRMSE has an expected value of
std M�D1ð Þ
std D1�D2ð Þ ¼ s

s
ffiffi
2

p ¼ 1ffiffi
2

p . Hence, a perfect model has an expected value of the rRMSE of 0.707.

Due to subject motion between volume acquisitions, the diffusion gradient for that mea-
surement is rotated slightly from the direction programmed into the sequence; we account for
the rotation of this vector by a motion correction procedure that aligns each diffusion scan to
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the mean non diffusion-weighted scan [47]. We use the motion-corrected gradient directions
in each scan to predict the signal in that scan. To calculate RMSE(D1,D2), we treated the two
sets of gradient directions as equal, so that deviations from this assumption are part of the mea-
surement noise. As a practical matter, for these subjects and conditions the differences in direc-
tion gradients are very small (maximum deviation less than 2 deg).

Simulations of fiber crossings
To further explore the differences between model-accuracy, model reliability, and parameter-
validity, and the distinction between model fitting and model interpretation, we evaluated the
model-accuracy and parameter-validity of the two models (DTM and SFM) in synthetic data
generated through numerical simulations of different tissue configurations. In each voxel, we
simulated a signal assuming that each fascicle in the voxel would generate a signal that can be
approximately described by a tensor with a principal diffusion direction aligned along the di-
rection of the fascicle. The diffusion signal was then generated as a weighted linear combina-
tion of fascicle signals from two fascicles in each voxel. The relative orientation of the fascicles
was varied, such that the crossing angles between the fascicles were between 0 and 90 degrees
and the relative contribution of the fascicles varied from a 1:1 ratio to 1:0 (single fascicle).

Noise was added to each voxel based on the actual noise in the measurements. We comput-
ed the noise in each voxel in the white matter as:

NoiseðyÞ ¼ D1ðyÞ � D2ðyÞ
2

ð11Þ

Fig 2. RMSE and SNR of diffusion MRI measurements. Error bars delineate the 95% interquantile range. RMSE does not change across b-values, but
SNR changes substantially, with the median decreasing from approximately 7 (b = 1000 s/mm2) to approximately 2 (b = 2000 s/mm2).

doi:10.1371/journal.pone.0123272.g002
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Where D1(θ), D2(θ) are the diffusion signals in each direction in the two different measure-
ments. In each iteration of the simulation, we randomly chose the noise from one of the voxels
in the white matter and added this noise sample to the simulated signal. We rectified the signal
to be non-negative after addition of the noise.

We fit the DTM and the SFM to the signal in each simulation. To assess parameter-validity,
we computed how well they represented the original tissue configuration entered into the sim-
ulation. For the DTM, this was done by calculating the minimal angular difference between the
DTM principal diffusion direction (PDD) and one of the simulated fascicle directions. For the
SFM, the minimal angular difference was calculated between each direction for which there
was a non-zero weight and the median of these minimal angular differences was computed.
The angular difference between the PDD (defined as the direction of the largest eigenvector for
the DTM, and the direction of the largest parameter for the SFM) in two iterations of the simu-
lation was computed. For each crossing angle and each ratio of fascicle contributions, we per-
formed 500 simulations and computed both model-accuracy and parameter-validity for
b = 1000, 2000 and 4000 s/mm2.

Estimating the effects of number of measurements
One important application of an estimate of model-accuracy is to select among competing
models, such as the DTM and the SFM in a particular data set. Another application of this esti-
mate is the evaluation and comparison of different measurement schemes. To estimate the ef-
fects of different measurement schemes on model-accuracy, we sub-sampled the 150 directions
of measurements in the data, to different numbers of measurements. To guarantee that the
measurements in each number n of sub-samples were in maximally separated directions [10],
we first chose one of the 150 measurement directions to be the origin. The set of electro-static
repulsion points with n vectors was then aligned by rotation to this vector. For each of the sub-
sequent n-1 points in this electro-static repulsion point set, the experimental point that was
closest (smallest angle) was added to the set. In each iteration, the selected vector was then re-
moved from the candidate pool, to avoid repetition, before continuing to the next iteration of
the selection process. The process ended when n vectors were chosen. Relative RMSE was cal-
culated for this sub-sample of measurement points in every voxel in the white matter.

Reproducible research
To facilitate the reproducibility of these results [48] we provide a full implementation of the
analysis that led to each of the figures and all of the conclusions in the text at http://github.
com/vistalab/osmosis/).

Results

Signal and noise in DWI measurements
Noise in the DWI measurements inherently limits the fit of models to the data. To assess the
noise in the DWI measurements, we calculated test-retest reliability, as the root of the mean
squared error (RMSE) between two measurements, RMSE(D1,D2). The distribution of RMSE
(D1, D2) across all of the voxels in the white matter does not differ substantially between mea-
surements conducted at different b-values (Fig 2), suggesting that the noise mainly arises from
sources that are common across the measurements in different b-values (subject motion, physi-
ological noise, etc.).

We also estimated the SNR in each voxel, SNR ¼ m
s, where μ is the average of the signal

across the diffusion-weighted measurements and σ is estimated from the standard deviation in
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the non diffusion-weighted measurements (10 for each b-value measurement). We correct the
computed value of σ for bias due to the small sample size (For a detailed proof of this correc-
tion see http://nbviewer.ipython.org/4287207). The SNR decreases as b-value increases, be-
cause the signal decreases with b-value.

DTM cross-validated model-accuracy is better than test-retest reliability
We fit each model to one data set and evaluated how well the model predicts a second, inde-
pendent data set. The quality of the prediction is shown in several ways (Fig 3). The two scatter
plots analyze the data from a typical voxel in the corpus callosum in one individual, at a b-
value of 2000 s/mm2. Panel A shows the repeatability of the measurements in this voxel, RMSE
(D1,D2). Panel B shows the prediction used to calculate RMSE(M2,D1); this scatter plot is very
similar to the symmetric prediction, RMSE(M1,D2).

Fig 3C shows model-accuracy for all of the white matter voxels and all three b-values in this
same individual as histograms of voxel rRMSE values. The DTM predicts the measurements in
most white matter voxels and all b-values better than test-retest reliability; that is, a large majori-
ty of the three rRMSE distributions is less than 1. For a b-value of 1000, 98%, of white matter
voxels have an rRMSE smaller than 1 (median 0.78), for a b-value of 2000, 99% (median 0.78)
and for a b-value of 4000, 98% (median 0.79). The 95% confidence interval on the median esti-
mates is 0.001 (estimated by bootstrap). The median rRMSE is close to the expected value of a
perfect model ( 1ffiffi

2
p ) with only small room for improvement. An essentially identical pattern of re-

sults was observed in the second participant for whommeasurements were conducted in these
three b-values. Similarly, in measurements conducted in 6 participants (including these two par-
ticipants) with a different spatial resolution (1.5 mm isotropic), and with a different number of
measurement directions (96 directions) at a b-value of 2000 s/mm2, we found that the median
rRMSE for DTMwas less than 1.0 in more than 99% of the voxels for all participants, and the av-
erage (across subjects) of the median rRMSE (across the white matter) was 0.78 (+/- 0.014, SD)

The DTMmodel-accuracy is lowest in specific white matter regions
Next, we examine the parts of the brain in which the DTMmodel-accuracy compared to test-
retest reliability is lowest. Voxels in which DTM rRMSE is higher than 1 are located in two
major clusters (Fig 4). The rRMSE of these voxels increases with higher b-value. One of these
regions is a part of the brain known to contain fascicle crossings: the centrum semiovale at the
intersection of the cortico-spinal tract, running in the superior-inferior direction, the superior
longitudinal fasciculus (SLF), running in the anterior-posterior direction and fascicles from the
corpus callosum, running in the medial-lateral direction. In addition, with higher b-values, the
model increasingly fails to account for the diffusion data in parts of the brain surrounding the
optic radiations (OR).

The complexity of the diffusion signal in these locations was described in previous work.
Alexander et al. [25] found that these regions were more accurately modeled with a higher
order of spherical harmonic basis functions. Using nested model comparison (ANOVA) rather
than cross-validation, they estimate that 5% of the voxels in the brain require an order 4 or
higher spherical harmonic basis set to represent the signal (at b = 1000 s/mm2), noting in par-
ticular the OR.

SFMmodel-accuracy
The SFM fits the data very accurately (Fig 5). The rRMSE is smaller than 1.0 in in 98.1%
(b = 1000, median 0.77), 99.9% (b = 2000, median 0.76) and 99.9% (b = 4000, median 0.76) of
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the white matter voxels in one individual, and essentially identical results were obtained in a
second individual. The 95% confidence interval on the median estimates is 0.001 (estimated by
bootstrap). Similar results were obtained in 6 participants (including these two), with higher
resolution measurements, at b = 2000 s/mm2. In all participants, more than 99.9% of the voxels
in the white matter have an rRMSE smaller than 1.0, and the average of the median rRMSE
across white matter voxels is: 0.77 (+/- 0.013, SD).

Through explorations of the data, we find that an excellent fit is obtained when the weight
on the regularizing term is rather small (S1 Fig). The cross-validation procedure informs us
that we can trust the SFM to describe the reliable features of the data.

The SFMmodel-accuracy is slightly better than that of the DTM almost everywhere, and in
particular for b-values larger than 1000 (Fig 6). It specifically improves the quality of the fit in
the regions where the DTMmodel-accuracy is lowest (Fig 7; compare with Fig 4). For a partic-
ular example of the differences between the SFM and the DTM, we examine the signal and the
model predictions in a voxel in the centrum semiovale below.

Why SFMmodel-accuracy is higher than that of DTM
To understand why the SFM improves the fit, we examined the signal in voxels that are sub-
stantially better fit by the SFM than the DTM. We illustrate a typical case using a voxel in

Fig 3. The diffusion tensor model cross-validates to an independent data set better than the data cross-validate. (A) The relative diffusion-attenuated
signals S(θ, b) in a single voxel in two measurements are compared. Each point in the scatter-plot represents the repeated measurement in one of 150
diffusion directions. (B) The signal measured in the one data set is compared to the predicted signal from fitting a tensor model to the other data set. (C) The
distribution of rRMSE values in the white matter for the diffusion tensor model (DTM). The rRMSE is calculated for each voxel as ratio of the RMSE in (B)
(model prediction vs. data) divided by the RMSE in (A) (test-retest reliability). When values of rRMSE are smaller than 1 (right dashed line), the DTM better
predicts a subsequent data set than repeated measurement. An optimal model will have an rRMSE distribution centered on 1ffiffi

2
p (left dashed line). Different

curves showmeasurements at different b-values.

doi:10.1371/journal.pone.0123272.g003

The Accuracy of Diffusion MRI Models

PLOS ONE | DOI:10.1371/journal.pone.0123272 April 16, 2015 13 / 26



centrum semiovale. Measured with a b-value of 4000, the DTM rRMSE is 1.2 and the SFM
rRMSE is 0.8. We show the interpolated diffusion signal surface in Fig 8. At low b-value (1000)
the two measurements of the surface are grossly the same and the noise appears as small

Fig 4. DTMmodel-accuracy is high (low rRMSE) in a large portion of the white matter, but systematically deviates in two locations (3% of the
voxels): the centrum semiovale (A, top row) and the optic radiation (A, bottom row). The columns show data obtained at three different b-values
(b = 1000, 2000, 4000) in one individual, and this pattern is observed in a second individual as well. The color overlay measures the rRMSE. Poor cross-
validation (rRMSE > 1) is denoted by the yellow-red colors. (B, C) The color overlays are rRMSEmaps calculated at b = 4000. The two images illustrate the
poor fits in the optic radiation (B) and the centrum semiovale (C).

doi:10.1371/journal.pone.0123272.g004
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modulations of that surface. The signal varies slowly with angle, while the noise varies relatively
rapidly with angle. At higher b-values (2000, 4000) the signal is smaller and the noise is ap-
proximately the same (Fig 1). Even so, at higher b-values the signal angular resolution is higher,
and reliable features of the angular distribution emerge. For example, two reliable ‘dimples’ ap-
pear in the signal profiles of both measurements (Fig 8), indicating two fascicles crossing
through this voxel. These ‘dimples’ cannot be captured by the DTM, but they are accurately
captured by the SFM. Hence, the SFM outperforms the DTM for this voxel.

The data and model fits in Fig 8 are very revealing in a second way. The SFMmodel predicts
the independent data set better than test-retest reliability. Yet, the SFMmodel captures only a
small subset of the features of the data (b = 4000). The many small variations in the diffusion
signal measured at high b-values cannot be trusted to replicate. The fitting procedure in the
SFM guides the model to select those features that are reliable across data replications.

The relationship between model-accuracy, parameter-reliability and
parameter-validity
The model-accuracy differences between the DTM and the SFM are small but consistent. What
are the implications of these results to the interpretation of model parameters? The estimated
directions in the SFMmodel are supposed to correspond to the fiber orientation distribution
function. The principal diffusion direction in the DTMmodel is not generally through to rep-
resent the fiber orientations, though in some regions of high anisotropy it is taken as the main
fiber direction. Here, we quantify these ideas.

We simulated the diffusion signal in a simple case and estimated parameter-reliability and
parameter-validity from these simulated signals. Specifically, we varied the angle between two

Fig 5. The sparse fascicle model (SFM) predicts the data better than data-to-data repeatability in
almost all voxels in the white matter. For higher b-values (2000, 4000) more than 99.9% of the white matter
voxels have rRMSE<1.

doi:10.1371/journal.pone.0123272.g005
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fascicles passing through a simulation voxel and the relative weight of each of the two fascicles.
In each voxel, realistic noise was added from the diffusion data.

Overall parameter-reliability is very good for both the DTM and SFM (Fig 9A). There is one
exception: the DTM is unreliable for crossing configurations at 90 degrees. This is because in
this case, for the true signal, the principal diffusion direction can be any direction along an
equator and so is determined entirely by small biases induced by the particulars of the noise
sample in each measurement.

Parameter-validity is assessed with regard to the directions entered in the fODF that gener-
ates the simulated signal. In this regard, the SFM performs well, while the DTM error increases
with larger crossing angles (Fig 9B). This is because in cases of crossing, the DTM assigns the
PDD to be an angular average of the actual directions of the fascicles entered in the simulation.

Fig 6. The SFM fits the data better than the DTM. (A) Image histograms comparing the rRMSE of the SFM and DTM in each white matter voxel. (B) Median
rRMSE of the DTM and SFM +/- 95% confidence interval estimated with a bootstrapping procedure.

doi:10.1371/journal.pone.0123272.g006
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The validity of the DTMmodel decreases with increasing crossing angle of the simulated fibers
because the DTM PDD falls between the two fibers, and this is further and further away from
the simulated fibers as the crossing angle grows. In a crossing angle of 90 degrees, the DTM
predicts an approximately disc-like tensor, and the PDD depends on the noise, rather than on
the signal. For that reason, validity is low, and the error bars are large. The validity of the SFM

Fig 7. The SFM substantially improves the signal prediction in the three percent of the voxels where the DTM is less reliable than the data. It
improves the fit in most voxels somewhat. Other details as in Fig 3. Essentially identical results were obtained in a second individual.

doi:10.1371/journal.pone.0123272.g007
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model does not vary substantially with the crossing angle, because it is equally able to capture
the true simulated fiber directions in all crossing angles.

Implications for experimental measurements: How many directions
should we measure?
Model-accuracy is a useful measure for choosing the number of measurement directions. Pre-
vious research used simulations to demonstrate that under realistic noise conditions, DTM pa-
rameter-reliability and parameter-validity stabilizes between 20 and 30 measurements [10].
However, the previous studies did not assess the effect of this experimental choice on model-
accuracy. Model-accuracy monotonically increases (rRMSE decreases) with the number of
measurements for all b-values, reaching near-asymptotic levels at approximately 40 measure-
ments (Fig 10); further increases in the number of directions provides small gains in accuracy.
Considering that the DTM has only 6 independent parameters, and the SFM can have many
more parameters, we may have hypothesized that the DTM would be more accurate for small
numbers of directions. But in fact, the SFM median rRMSE is equal or lower than that of the
DTM even when few directions are included.

Fig 8. Local extrema in the diffusion signal attenuation do not cross-validate well. The two middle columns are independent measurements of the
same voxel from the centrum semiovale. The three rows showmeasurements of this voxel obtained at b = 1000, 2000, and 4000. Notice that local minima
and maxima differ between replications (arrows). The DTM (left column) and SFM (right column) predictions generally cross-validate well and are much
smoother than the data. This particular voxel was chosen to illustrate a case where there are likely to be crossing fascicles. At this location and at b = 4000,
the rRMSE of the DTM is greater than 1, while the rRMSE of the SFM is less than 1.

doi:10.1371/journal.pone.0123272.g008
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Discussion
We quantitatively compared two major classes of diffusion signal models (DTM and SFM), as-
sessing model-accuracy for predicting diffusion signals. A first contribution of this work is that
we show that both models predict measurement in an independent data set more accurately
than assuming the independent set will replicate the first data set (test-retest reliability). A sec-
ond contribution is showing that the cross-validated model-accuracy of the DTM and SFM

Fig 9. A simulation study of parameter-validity and parameter-reliability of fiber ODF estimates. (A) Parameter-reliability of the DTM and SFM
estimates is defined as the angular difference of the PDD between model parameters in two simulations of the same fascicle configuration with different
noise. (B) Parameter-validity is estimated by examining the angular difference between the peaks of the estimated and true fODF entered in the simulation.
(C) Summary of parameter-reliability and parameter-validity. The black lines represent the true simulation fascicle directions and colored lines represent the
difference between the estimated and the true fODF peak (parameter-validity). The shaded region represents parameter-reliability in estimating the peak of
the fODF with different noise samples. The DTM PDD is an invalid estimate of the fiber directions over a wide range of crossing angles and unreliable when
crossing angles are near 90 degrees. The SFM provides a valid estimate of fiber directions, and is reliable throughout.

doi:10.1371/journal.pone.0123272.g009
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models are nearly identical at b-values of 1000, but at 2000 and above there is a small advantage
to the SFM model-accuracy. This result is replicated in two different acquisition schemes on 6
different participants, and across several diffusion-weighting b-values.

There is consensus that DWI needs further validation, but there is no consensus about the
appropriate validation methods. One approach is to compare fascicle models using ex-vivo
measurements and phantoms [49,50]. A second is to compare models to simulations [28].
These are valuable analyses, but they do not address model-accuracy for any specific data set.
The specificity is important because there is substantial variation in scanner hardware and sub-
ject populations. Hence, a pulse sequence that is optimal at one institution may be sub-optimal
or even unfeasible at another institution or a different subject population. Because no single
pulse sequence and processing pipeline will be optimal under all conditions, it is essential that
researchers have methods to evaluate the method they use with respect to the data they collect.
Such in vivo validation complements validation using ex vivo data, phantoms and simulations;
they are not equivalent nor in conflict (see also [42]).

A third contribution of this work is that we provide a complete computational methodology
for performing in vivo validation of diffusion models and processing pipelines. Using these
methods, we show how to assess the effect of the number of directions and the b-value on
model accuracy. We release the implementation of this methodology as open-source software.

SFM and DTMmodel-accuracy
The SFM predicts the diffusion signal very well. The relative RMSE of a perfect model, assum-
ing Gaussian measurement noise, is 0.707. The SFMmodel rRMSE is as low as 0.76, approach-
ing the optimal level. The rRMSE of the DTMmodel is also not far from optimal, although it is
inferior to the SFM model, particularly in regions of the brain with major fiber crossings and at
high b-values (compare Figs 4 and 7).

There is a great deal of interest in making measurements at high b-values (4000 and up).
The potential improvement in angular resolution, however, comes at the cost of reduced sig-
nal-to-noise ratio Specifically, in these data, the signal level drops while the noise level remains
approximately constant (Fig 1). Because MRI data is non-negative, it has a Rician distribution,
rather than a Gaussian distribution [51]. In principle, this should complicate model-fitting ef-
forts, because the distributional assumptions do not necessarily hold. In practice, the signal
level in the white matter is sufficiently high such that the noise is indistinguishable from a
Gaussian distribution (Fig 2). In analyzing the tradeoff of signal-to-noise, we find that the
model-accuracy of the SFM is better than that of the DTM at b� 2000 s/mm2, but about the
same or only slightly better at b = 1000. Additionally, as the b-value increases, the SFM fits im-
prove but the DTM fits do not (Figs 6 and 10).

While DTMmodel-accuracy is excellent at low b-values, it does not have good parameter-
validity: The principal diffusion direction of the tensor does not match the fascicle orientations.
Even so, the DTM can be useful as a coarse summary of white matter biology. The literature
contains many examples where DTM parameters explain a substantial amount of variance in
behavioral measures [18–20], showing the utility of the diffusion measurement itself in reveal-
ing a relationship between biology and mind.

Models of the SFM variety are a better basis for white matter tracking algorithms because
the fascicle directions are estimated more accurately [2,42]. This is demonstrated in simula-
tions using a small number of known crossing-angles (Fig 9). Nevertheless, further work is
needed to determine the parameter-validity of the fODF estimates. For example, the fODF esti-
mates are sensitive to assumptions about the fascicle response function [29] as well as the dis-
cretization of the model directions [52].

The Accuracy of Diffusion MRI Models

PLOS ONE | DOI:10.1371/journal.pone.0123272 April 16, 2015 20 / 26



The importance of cross-validation
Table 1 summarizes papers that evaluate diffusion models within the voxel. These methods dif-
fer from the approach presented here in several ways. First, most of these papers use simula-
tions or exotic data sets that may not be comparable with respect to artifacts and noise
obtained in typical human data sets with a clinical scanner. Hence, the results may not general-
ize to data collected at standard resolution and field strength. Second, most of these papers
(with the exception of [8,25]) assess parameter-reliability or parameter-validity (relative to a
model or phantom); they do not evaluate how well the model predicts the diffusion signal
(model-accuracy). The work here is also the first assessment of model accuracy compared to
test-retest reliability.

For the purpose of model comparison, the cross-validation approach is asymptotically
equivalent to the Akaike Information Criterion (AIC, [53]). Cross-validation has the advantage
that unlike the AIC it does not require an explicit calculation of the number of parameters.
This calculation is not always straightforward, particularly when regularization is used is the
model fitting procedure [54]. Cross-validation also has the advantage that unlike ANOVA it
does not require nested models [25] or an assumption of Gaussian noise.

SFM univariate summary measures
An attractive feature of the DTM is the associated univariate parameters that are derived from
the tensor: fractional anisotropy (FA), radial and longitudinal diffusivity, and mean diffusivity.

Fig 10. The effects of number of measurement directions onmodel-accuracy. Subsamples from the 150 direction measurements were used to fit the
DTM (bright grey) and SFM (dark grey) and to estimate rRMSE. Median in one participant is presented. Similar results are found in a second participant, and
in 6 participants in b-value of 2000 s/mm2.

doi:10.1371/journal.pone.0123272.g010
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The SFM and similar models would benefit from having similar, informative,
univariate summaries.

Dell’Acqua et al. proposed an interesting statistic using another SFM algorithm [55]. They
define the Hindrance Modulated Orientation Anisotropy (HMOA) as the sum of the estimated
fascicle weights in each voxel normalized so that a value of 1 is the highest possible value that
can be realistically measured in a biological sample.

A second statistic is the number of distinct fascicles with a peak weight greater than some
threshold [35,55]. Given that the number of fascicles may depend on the regularization con-
straints applied to the fODF and given that many regularization conditions produce equally ac-
curate predictions of the signal (see S1 Fig), this statistic varies dramatically within a voxel,
even for the same measurement, and we do not believe that it is very reliable.

Based on SFM, we can define two other statistics. The first is an SFM analog of FA: the fasci-
cle-anisotropy (FA), which is the ratio of the sum of the fascicle weights, and the anisotropy
weight W0: FA = Sβ/W0

A second useful univariate statistic measures an index of the distribution of angles between

the fascicle directions, which we refer to as Dispersion Index (DI): DI ¼ Pn
i ¼ 2

b2i sinðaiÞP
i
b2i
, where

αi is the angle between the ith fascicle and the first fascicle, which is the one with the largest
weight. This measure is larger when there are many large values of fascicle weights with large
angles between them. The dispersion index summarizes the number of distinct crossing fiber
populations within a voxel and is an interesting target for future research. Maps of FA and DI
are shown in Fig 11.

Conclusion: Voxel-wise diffusion models are useful
For most of the white matter, but not all, DTM prediction error of a second data set is smaller
than the error in test-retest reliability between the second and first data sets. The SFMmodel
provides an even better fit to the data throughout the brain, and a substantially better fit in re-
gions where the DTM does poorly. The DTM and SFM fits are accurate across b-values, al-
though SFM is slightly more accurate at high b-values. At a b-value of 4000 s/mm2 the DTM
predicts an independent set of data more accurately than the test-retest prediction in 97% of
the voxels; the SFM predicts the independent data set more accurately than test-retest reliabili-
ty in 99.9% of the voxels. Because these models have high model-accuracy, replacing the data
with the model prediction reduces noise. Hence, it is useful to perform subsequent analyses,
such as tractography, using the model prediction rather than the raw measurements.

A major advantage of the SFM is that it provides a good orientation estimate when there are
two fiber directions: SFM models explicitly estimate the fODF within each voxel [1,3,28]. An
important alternative approach embodied in diffusion spectrum imaging (DSI, also called q-
space imaging) does not make an explicit local model of the fODF [56,57]. The DSI approach
is summarized as a “model-free diffusion MRI technique ... without the need for a priori infor-
mation or ad hoc models” ([56], pg. 1385). These methods measure diffusion signals in multi-
ple directions and using multiple b-values. The complete set of data is used to derive a
probability distribution that guides tractography, and there is no explicit commitment associat-
ing local extrema in the function with fascicles. As they are model-free, these methods do not
discriminate between reliable signals, and irreproducible noise (Fig 8).

The cross-validation analysis and rRMSE measure described here show that having a model
is useful for characterizing data with noise. Specifically, cross-validated model-accuracy is
higher than test-retest reliability so that, the model reduces the measurement noise. This is true
for the models that we have analyzed here, and could in principle be true for the many other
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available models that analyze diffusion MRI data, including models that use spherical harmon-
ics [28], or a q-space approach to modeling the fODF [58,59], and models that use multiple
tensors [60], or deconvolve the signal with stick-like functions [1]. All of these models predict
the signal and their model-accuracy can be evaluated using the framework that we provide.

Fig 11. Rotation-invariant statistics based on the SFM. The SFM leads to two rotation-invariant statistics
that are calculated in every voxel, and shown here in axial sections at the height of the Centrum Semiovale
(A, B; compare to Figs 4B and 7B) and the Optic Radiation (C, D; compare to Figs 4C and 7C). The Fiber
Anisotropy (FA; A, C) is an indication of the total fiber fraction, relative to W0. The Dispersion Index (DI; B, D)
is an indication of the degree to which different fascicles cross each other within each voxel.

doi:10.1371/journal.pone.0123272.g011

The Accuracy of Diffusion MRI Models

PLOS ONE | DOI:10.1371/journal.pone.0123272 April 16, 2015 23 / 26



Supporting Information
S1 Fig. Regularization parameters for the SFM fit using Elastic Net.We used regularization
and cross-validation to (a) prefer solutions that minimize the number of fascicles and (b) pre-
vent over-fitting. To find the appropriate setting of the regularization parameters λ and α, we
used a cross-validation approach. The SFM was fit on one set of data for a range of λ and α val-
ues. For each combination the SFM was fit to one data set and the prediction error was calcu-
lated using the other data set. We choose λ and α that minimize the median rRMSE across
white matter voxels. We explore the effects of regularization and the trade-off of different sets
of constraints on the accuracy of the fit. The best setting of these parameters is to a relatively
low degree of regularization (λ = 0.0005) and relatively L1-weighted constraint (α = 0.2). These
are the parameters used in all the SFM model fits.
(TIF)
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