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Reading-related responses in the lateral ventral temporal cortex (VTC) show a consistent spatial layout across 

individuals, which is puzzling, since reading skills are acquired during childhood. Here, we tested the hypothe- 

sis that white matter fascicles and gray matter microstructure predict the location of reading-related responses 

in lateral VTC. We obtained functional (fMRI), diffusion (dMRI), and quantitative (qMRI) magnetic resonance 

imaging data in 30 adults. fMRI was used to map reading-related responses by contrasting responses in a reading 

task with those in adding and color tasks; dMRI was used to identify the brain’s fascicles and to map their end- 

point densities in lateral VTC; qMRI was used to measure proton relaxation time (T 1 ), which depends on cortical 

tissue microstructure. We fit linear models that predict reading-related responses in lateral VTC from endpoint 

density and T 1 and used leave-one-subject-out cross-validation to assess prediction accuracy. Using a subset of 

our participants (N = 10, feature selection set), we find that i) endpoint densities of the arcuate fasciculus (AF), 

inferior longitudinal fasciculus (ILF), and vertical occipital fasciculus (VOF) are significant predictors of reading- 

related responses, and ii) cortical T 1 of lateral VTC further improves the predictions of the fascicle model. In the 

remaining participants (N = 20, validation set), we show that a linear model that includes T 1 , AF, ILF and VOF 

significantly predicts i) the map of reading-related responses across lateral VTC and ii) the location of the visual 

word form area, a region critical for reading. Overall, our data-driven approach reveals that the AF, ILF, VOF 

and cortical microstructure have a consistent spatial relationship with an individual’s reading-related responses 

in lateral VTC. 
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. Introduction 

The interplay between brain structure and function in concerting
uman cognition has spiked considerable interest in recent years. One
f the most fascinating observations in this context is the consistent
patial arrangement of category-selective regions in ventral temporal
ortex (VTC) across individuals ( Glezer and Riesenhuber, 2013 ; Grill-
pector et al., 2017 ; Grill-Spector and Weiner, 2014 ; Kanwisher, 2010 ;
einer et al., 2018 ; Weiner and Grill-Spector, 2010 ). VTC contains sev-

ral visual category-selective regions that respond more strongly to their
referred category than others, including regions that are selective to
aces ( Kanwisher et al., 1997 ), scenes ( Epstein and Kanwisher, 1998 ),
odies ( Peelen and Downing, 2005 ), words ( Cohen et al., 2000 ) and
ossibly numbers ( Grotheer et al., 2016b , 2016a ; Shum et al., 2013 ,
ut see Grotheer et al., 2018 ). These category-selective regions play a
ritical role in visual perception; for instance, a lesion of a category-
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elective region produces a specific inability to recognize items of the
ategory that region is selective to ( Gaillard et al., 2006 ; Konen et al.,
011 ; Rossion et al., 2003 ; Schiltz et al., 2006 ); similarly, electrical stim-
lation of a category-selective region specifically disrupts the percep-
ion of the respective category ( Jonas et al., 2012 ; Julian et al., 2016 ;
arvizi et al., 2012 ; Rangarajan et al., 2014 ). Strikingly, recent research
howed that anatomical landmarks can predict the location of these
ategory-selective regions in VTC. For example, the mid-fusiform sul-
us predicts the location of face-selective regions in the fusiform gyrus
 Weiner et al., 2014 ) and the intersection between the anterior lin-
ual sulcus and the collateral sulcus predicts the location of the place-
elective region ( Weiner et al., 2018 ). However, presently, there is an
ctive debate regarding what factors drive this strikingly consistent spa-
ial organization of VTC. 

Several hypotheses have been put forward to explain the consis-
ent localization of category-selective regions across individuals, includ-
ng: i) genetics, which may innately determine the location of these re-
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ions ( Abbasi et al., 2020 ; McKone et al., 2012 ; Polk et al., 2007 ), ii)
oveal and peripheral eccentricity biases coupled with consistent view-
ng demands of certain stimuli (e.g., foveation on words during read-
ng) ( Behrmann and Plaut, 2015 ; Hasson et al., 2002 ; Malach et al.,
002 ), (iii) the underlying cortical microarchitecture, which is sup-
orted by the observation that different category-selective regions are
ocated within different cytoarchitectonic regions of VTC ( Gomez et al.,
017 ; Weiner et al., 2017 ) and iv) white matter connections, as category-
elective regions are part of more extended brain networks and hence
eed to communicate with other regions across the brain ( Haxby et al.,
000 ; Osher et al., 2016 ; Papagno et al., 2011a ; Saygin et al., 2016 ,
012 ). Note that these hypotheses are not mutually exclusive as all of
hese factors together may constrain the location of functional regions
e.g., see Behrmann and Plaut, 2015 for a unifying framework). 

Here, we primarily focus on the last hypothesis and evaluate if and
ow the location of major white matter fascicles relates to functional
esponses in VTC during a reading task. We focus on the white mat-
er connections of reading for two main reasons: First, given that read-
ng is a learned skill, it is particularly puzzling, that there is a consis-
ent spatial layout of reading-related responses across individuals. In-
eed, recent evidence shows that learning to read changes functional
esponses in the lateral portion of VTC (lateral VTC) ( Ben-Shachar et al.,
011 ; Cantlon et al., 2011 ), leading not only to changes in distributed
esponses ( Nordt et al., 2019 ), but also to the emergence of a region se-
ective for words ( Dehaene-Lambertz et al., 2018 ; Dehaene et al., 2010 ;
ordt et al., 2020 ). This region, which is often referred to as the visual
ord form area (VWFA, Cohen et al., 2000 ; Dehaene and Cohen, 2011 ),

s located in the occipito-temporal sulcus (OTS), and is critically in-
olved in reading ( Gaillard et al., 2006 ; Hirshorn et al., 2016 ). The
WFA is more commonly found in the left hemisphere than the right
emisphere, which aligns with an overall left-hemispheric lateraliza-
ion for reading and language more broadly ( Behrmann and Plaut, 2015 ;
ehaene et al., 2010 ; Powell et al., 2006 ). Second, recent research has
rovided evidence for the idea that white matter connections predict
he location of category-selective regions involved in processing faces,
ords, places, and tools ( Bi et al., 2015 ; Osher et al., 2016 ; Saygin et al.,
016 , 2012 ), and, in particular, play a crucial role in constraining the
patial layout of reading-related responses in lateral VTC ( Saygin et al.,
016 ). Specifically, Saygin and colleagues reported that pairwise white
atter connections between cortical regions, the so called "white mat-

er fingerprint ”, at age 5 predict functional responses in VTC to words at
ge 8. However, an open question is which white matter fascicles con-
titute this “white matter fingerprint ” and predict the spatial layout of
eading-related responses in lateral VTC. 

To address this gap in knowledge, we examined which white mat-
er fascicles of the human brain predict the map of reading-related re-
ponses across lateral VTC as well as the location of the VWFA. White
atter fascicles are the large-scale bundles that connect distant cortical

egions. Studies have identified the fascicles that connect to the VWFA
 Bouhali et al., 2014 ; Grotheer et al., 2019 ; Lerma-Usabiaga et al., 2018 ;
eatman et al., 2013 ) and those that interconnect function regions re-

ated to reading across the brain ( Grotheer et al., 2019 ). These fasci-
les include i) the arcuate fasciculus (AF), which connects the tempo-
al and the frontal lobes ( Catani et al., 2002 ), ii) the posterior arcu-
te fascicle (pAF), which connects the temporal and the parietal lobes
 Weiner et al., 2016 ), iii) the inferior longitudinal fasciculus (ILF), which
onnects the occipital lobe with the anterior tip of the temporal lobe
 Catani et al., 2002 ), iv) the inferior fronto-occipital fasciculus (IFOF),
hich connects the occipital and the frontal lobes ( Catani et al., 2002 )
nd v) the VOF, which connects the occipital and the parietal lobes
 Takemura et al., 2016 ; Weiner et al., 2016 ; Yeatman et al., 2014b ). In
ddition, lesion studies ( Papagno et al., 2011b ) as well as studies corre-
ating behavioral measures of reading performance with diffusion mea-
ures ( Cummine et al., 2013 ; Yablonski et al., 2019 ), suggest that the un-
inate fasciculus ( Catani et al., 2002 ) also plays a critical role in reading,
articularly in word retrieval and morphological processing. However,
2 
o previous studies tested the hypothesis that these fascicles covary with
he spatial layout of reading-related responses in lateral VTC. In other
ords, it is unknown if the endpoints of these fascicles in lateral VTC

o-localize with the spatial map of reading-related response as well as
he location of the VWFA. Critically, recent methodological innovations
n white matter tractography, including constrained spherical deconvo-
ution (CSD, Tournier et al., 2019 , 2012 ) and anatomically-constrained
ractography (ACT, Smith et al., 2012 ), now enable researchers to re-
olve white matter tracts close to the white matter / gray matter bound-
ry, thereby allowing us to directly investigate if and how fascicles con-
ribute to the consistent spatial layout of reading-related responses in
ateral VTC. 

While we will primarily focus on the role of white matter fascicles in
riving the spatial layout of reading-related responses in lateral VTC,
e also examined an additional hypothesis that has not been tested
reviously. That is, we asked whether differences in the gray matter
icrostructure across the cortical surface may also contribute to the

onsistent localization of category-selective regions in VTC. Recently
eveloped quantitative MRI (qMRI) methods ( Edwards et al., 2018 ;
utti et al., 2014 ; Mezer et al., 2013 ) now enable assessing characteris-
ics of the tissue microstructure of the gray matter in vivo ( Gomez et al.,
017 ; Lutti et al., 2014 ; Natu et al., 2019 ; Weiskopf et al., 2013 ). QMRI
easures proton relaxation time (T 1 ), which differs between category-

elective regions selective to faces and places ( Gomez et al., 2017 ),
hanges during development ( Gomez et al., 2017 ; Natu et al., 2019 ),
nd correlates with people’s performance in certain tasks, such as face
rocessing ( Gomez et al., 2017 ). As T 1 depends on the local cortical
icrostructure (such as myelination, cell density, cell distribution, and

ron concentration), which also covaries with the location of functional
egions ( Weiner et al., 2017 ), it is an open question whether T 1 may
e an additional factor predicting the spatial layout of reading-related
esponses in lateral VTC. 

To address the hypothesis that white matter fascicles and gray mat-
er microstructure contribute to the consistent functional organization
f VTC, we used a mutimodal approach in which we obtained functional
fMRI), diffusion (dMRI) and quantitative MRI (qMRI) data in 30 adult
articipants. Using fMRI, we identified reading-related responses in lat-
ral VTC by contrasting activations during a reading task with those
licited by adding and color tasks. These three tasks were performed
n identical visual stimuli (letter/number morphs) as in prior studies
 Fig. 1 a , Grotheer et al., 2019 , 2018 ), allowing us to disentangle the
mpact of the performed task from that of the visual stimulus the task
s being performed on. Using this contrast, we (1) mapped activations
uring reading across lateral VTC, and (2) identified a region in the mid
ccipito-temporal sulcus (mOTS) that shows a significant preference for
he reading task over the other tasks (T ≥ 3, voxel level) ( Fig. 1 b ). This
unctional region of interest (fROI) likely corresponds to the VWFA-2
 Grotheer et al., 2018 ; Lerma-Usabiaga et al., 2018 ; White et al., 2019 ).
sing dMRI data, we generated a white matter connectome in each par-

icipant, automatically identified the white matter fascicles that con-
ect to lateral VTC ( Fig. 1 c ), and mapped the endpoint density of these
ascicles to the cortical surface. Using qMRI, we meassured proton re-
axation time (T 1 ) in each particpant and mapped T 1 across the cortical
urface ( Fig. 1 d ). To determine which are the informative features of the
hite matter anatomy that predict the spatial layout of reading-related

esponses in lateral VTC, we used data from 10 randomly selected par-
icipants (the feature selection set) and derived linear models relating
ascicle endpoint densities to reading-related reponses in lateral VTC
 Fig. 1 e ). Next, to test if gray matter properties improve the prediction
f reading-related responses in lateral VTC compared to using only fas-
icle endpoints, we tested if adding the T 1 value at each vertex improves
he model. Finally, using independent data from 20 new subjects (the
alidation set), we tested how well a model that combines the most in-
ormative features of the white and gray matter anatomy predicts the
ap of reading-related responses across lateral VTC as well the location

f the VWFA-2. 
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Fig. 1. Overview of the experimental approach a. FMRI experiment used to determine reading-related neural responses. Subjects viewed morphs between numbers 

and letters, containing either > 80% letter ( < 20% number) or > 80% number ( < 20% letter) information. At the beginning of each trial, a cue (Read/Add/Color) 

indicated the task to be performed, then four stimuli of the same morph type appeared for 1 s each, followed by an answer screen presented for 2 s. Subjects indicated 

their answer with a button press. Identical stimuli were presented across all three tasks. Trial structure is shown at the bottom. b. Reading-related responses in 

anatomically defined lateral VTC (black outline) from the fMRI experiment. Data are shown on the inflated cortical surface of a representative subject. We used a 

t-map (reading > adding + color) to identify a reading-related functional region of interest in the mOTS (green outline, threshold: T ≥ 3), which likely corresponds to 

the anterior visual word form area (VWFA-2). Finally, the t-map was z-scored to control for inter-individual differences in mean t-values. c. White matter fascicles 

used to predict reading-related responses in lateral VTC. We created a white matter connectome from each subject’s dMRI data and automatically identified six 

fascicles that have endpoints in the temporal lobe. The endpoint densities of these fascicles were used to predict reading-related responses in lateral VTC. d. T 1 map 

across lateral VTC (black outline) estimated from qMRI data and shown on the inflated cortical surface of a representative subject. e. Schematic of the linear model 

relating reading-related responses to a weighted sum of white matter fascicle endpoint densities and gray matter T 1 at each vertex in lateral VTC. Model accuracy 

was assessed using leave-one-subject-out cross-validation. A bbreviations: N = number, L = letter, VTC = ventral temporal cortex, mOTS = mid occipito-temporal sulcus, 

VWFA = visual word form area, UCIF = uncinate fasciculus, IFOF = inferior frontal occipital fasciculus, ILF = inferior longitudinal fasciculus, AF = arcuate fasciculus, 

VOF = vertical occipital fasciculus, T1 = proton relaxation time, Vtx = vertex, S = Subject. 
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. Methods 

.1. Participants 

30 typical adult participants (15 female, mean age ± SE: 27 ± 1 years,
 left-handed) were recruited from Stanford University and surrounding
reas and participated in two experimental sessions. Subjects gave their
nformed written consent and the Stanford Internal Review Board on
uman Subjects Research approved all procedures. 

.2. Stimuli and design 

In the fMRI experiment, we presented well-controlled character-like
timuli, which could be used for a reading task, a math task, and a color
emory task ( Fig. 1 a ). These stimuli, which were morphs of numbers

nd letters, allowed us to map reading-related responses while keeping
he visual input constant ( Grotheer et al., 2019 , 2018 ). At the beginning
f each trial, subjects were presented with a cue (Add, Read, or Color),
ndicating which task they should perform. In the reading task, subjects
ere instructed to read the word in their head, and to indicate which
ord had been presented. In the adding task, participants were asked to

um the values of the stimuli and to indicate the correct sum. Finally,
n the color task, participants were asked to memorize the color of the
timuli and to indicate which color was shown during the trial. After the
ue, 4 images were shown sequentially, followed by an answer screen.
ll images in a trial were either number morphs ( > 80% number + < 20%

etter) or letter morphs ( > 80% letter + < 20% number), i.e. stimuli that
ostly contained information from one category, but held just enough

vidence from the other category to be recognizable as both letters and
3 
umbers. The same stimuli appeared in all tasks. The answer screen was
resented for 2 seconds and showed the correct answer as well as one
ncorrect answer at counterbalanced locations left and right of fixation.
articipants performed 6 runs, each lasting six minutes, and the task
rder was randomized across runs and participants. Prior to the exper-
ment, subjects were given training to ensure that they could perform
he task with at least 80% accuracy. 

.3. Functional MRI data acquisition and preprocessing 

fMRI data was collected at the Center for Cognitive and Neurobio-
ogical Imaging at Stanford University, using a GE 3 tesla Signa Scanner
ith a 32-channel head coil. We acquired 48 slices covering the entire

ortex using a T2 ∗ -sensitive gradient echo sequence (resolution: 2.4 mm
 2.4 mm x 2.4 mm, TR: 1000 ms, TE: 30 ms, FoV: 192 mm, flip angle:
2°, multiplexing factor of 3). A subset (N = 20) of the fMRI data were
sed for previous studies ( Grotheer et al., 2019 , 2018 ). 

A whole-brain, anatomical volume was also acquired, once for each
articipant, using a T1-weighted BRAVO pulse sequence (resolution:
mm x 1 mm x 1 mm, TI = 450 ms, flip angle: 12°, 1 NEX, FoV: 240
m). The anatomical volume was segmented into gray and white matter
sing FreeSurfer ( http://surfer.nmr.mgh.harvard.edu/ ), with manual
orrections using ITKGray ( http://web.stanford.edu/group/vista/cgi-
in/wiki/index.php/ItkGray ). From this segmentation, each partici-
ant’s cortical surface was reconstructed. Each participant’s anatomical
rain volume was used as the common reference space for all analyses,
hich were always performed in individual native space. In order to
e able to derive linear models specific to lateral VTC, we first drew
n anatomical boundary of lateral VTC in the FreeSurfer average brain.

http://surfer.nmr.mgh.harvard.edu/
http://web.stanford.edu/group/vista/cgi-bin/wiki/index.php/ItkGray
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his anatomical boundary stretched from the mid-fusiform sulcus (me-
ial boundary) to the inferior temporal gyrus (lateral boundary) and
rom the anterior end of the occipito-temporal sulcus (OTS, anterior
oundary) to the posterior transverse collateral sulcus (posterior bound-
ry). This boundary was chosen to match previous work ( Nordt et al.,
019 ) except for the anterior boundary, which we shifted more ante-
iorly to ensure that the entire OTS is included. This anatomically de-
ned lateral VTC boundary, which is made available in GitHub ( https://
ithub.com/VPNL/predictFuncFromStructCode ), was transformed from
he FreeSurfer average brain to each individual’s native space (black
utline in Fig. 1 b,c ) using cortex-based alignment. All further analyses
ere restricted to this anatomical expanse. 

The functional data was analyzed using the mrVista toolbox ( http:
/github.com/vistalab ) for Matlab, as in previous work ( Grotheer et al.,
019 , 2018 ). The data was motion-corrected within and between
cans and then manually aligned to the anatomical volume. The man-
al alignment was optimized using rigid-body robust multiresolu-
ion alignment ( Nestares and Heeger, 2000 ). No smoothing was ap-
lied. The time course of each voxel was high-pass filtered with a
/20 Hz cutoff and converted to percentage signal change. A de-
ign matrix of the experimental conditions was created and convolved
ith the hemodynamic response function (HRF) implemented in SPM
 http://www.fil.ion.ucl.ac.uk/spm ) to generate predictors for each ex-
erimental condition. Response coefficients (betas) were estimated for
ach voxel and each predictor using a general linear model (GLM). 

.4. Functional regions of interest and functional activation maps 

We evaluated reading-related responses by contrasting the reading
ask with the adding and the color task in the experiment. The result-
ng T-maps were used to identify a reading-related functional region of
nterest (fROI) in the left mid occipito-temporal sulcus (mOTS) ( green

utline in Fig. 1 b ). This region likely corresponds to the anterior seg-
ent of the visual word form area ( Cohen et al., 2000 ; Dehaene and
ohen, 2011 ) or VWFA-2 ( Grotheer et al., 2018 ; Lerma-Usabiaga et al.,
018 ; Stigliani et al., 2015 ; Weiner et al., 2017 ). It was defined in each
articipant’s cortical surface using both functional and anatomical crite-
ia. Specifically, we took only those vertices that (i) showed a preference
or the reading task over the other tasks beyond the threshold of T ≥ 3
nd (ii) fell within the mOTS, which is easily recognizable on the corti-
al surface, as the next more lateral sulcus relative to the mid-fusiform
ulcus. The resulting VWFA-2 fROI could be identified in 28/30 partic-
pants (fROI size ± SE: 301 ± 52 mm 

3 ). 
Following this, each subject’s reading-related T-map was z-scored to

ontrol for inter-subject variability in overall response magnitude and
apped onto that individual’s inflated cortical surface using FreeSurfer

 Fig. 1 b ). Responses at each vertex within the anatomical boundary of
ateral VTC were used to derive linear models to predict reading-related
esponses based on the brain’s white matter fascicles and gray mat-
er tissue microstructure. In these models, data from individual partici-
ants were concatenated vertically. As activations during reading were
ower and less frequent in the right than the left hemisphere, which
s consistent with the current literature ( Behrmann and Plaut, 2015 ;
rotheer et al., 2019 ), here we focus on the left hemisphere only. 

.5. Diffusion MRI data acquisition and processing 

Diffusion-weighted MRI (dMRI) data was collected from the same
articipants during a different day than the fMRI data, at the same facil-
ty and with the same 32-channel head-coil. DMRI was acquired using
 dual-spin echo sequence in 96 different directions, 8 non-diffusion-
eighted (b = 0) images were collected, 60 slices provided full head cov-

rage (resolution: 2 mm × 2 mm × 2 mm, TR: 8000 ms, TE: 93.6 ms,
oV: 220 mm, flip angle: 90°, b: 2000 s mm 

− 2 ). 
DMRI data was preprocessed using a combination of tools

rom mrTrix3 (github.com/MRtrix3/mrtrix3) and mrDiffusion toolbox
4 
 http://github.com/vistalab/vistasoft ) for Matlab. First, we denoised
he data using i) a principal component analysis, ii) Rician based denois-
ng, and iii) Gibbs ringing corrections ( Kellner et al., 2016 ; Veraart et al.,
016b , 2016a ). Second, we corrected for eddy currents and motion us-
ng FSL ( Smith et al., 2004 ) ( https://fsl.fmrib.ox.ac.uk/ ), and we per-
ormed bias correction using ANTs ( Tustison et al., 2010 ). Third, dMRI
ata was registered to the average of the non-diffusion weighted im-
ges and aligned to the corresponding high-resolution anatomical brain
olume using rigid body transformation. Fourth, voxel-wise fiber ori-
ntation distributions (FODs) were calculated using constrained spher-
cal deconvolution (CSD) ( Tournier et al., 2007 ). For this, we used
he Dhollander algorithm to estimate the three-tissue response function
 Dhollander et al., 2016 ) with automated selection of the number of
pherical harmonics. The FODs were then used for tractography. 

We used MRtrix3 ( Tournier et al., 2019 ) (RC3,
ttp://www.mrtrix.org/ ) to generate a white matter connectome
or each subject. For each connectome, we used probabilistic fiber
racking with the following parameters: algorithm: IFOD1, step size:
.2 mm, minimum length: 4 mm, maximum length: 200 mm, FOD
mplitude stopping criterion: 0.1, maximum angle: 13.5°. We used
natomically constrained tractography (ACT) ( Smith et al., 2012 ),
hich utilizes information of different tissue types from the FreeSurfer
 https://surfer.nmr.mgh.harvard.edu/ ) segmentation of each partici-
ant’s high-resolution anatomical scan to optimize tractography. ACT
lso allowed us to identify the gray-white matter interface (GWMI).
eeds for tractography were randomly placed at this interface within
he anatomical boundary of lateral VTC. This enabled us to base our
redictions on tracts that reach the gray matter. Each connectome
onsisted of 3 million streamlines. 

Finally, we used Automated Fiber Quantification (AFQ, Yeatman
t al., 2012b , https://github.com/yeatmanlab/AFQ ) to automatically
egment the connectome of each participant into well-established fas-
icles. The resulting classified connectome was optimized by removing
racts that were located more than 4 standard deviations away from the
ean of their respective fascicle (similar to Yeatman et al., 2014, 2012).
e conducted all subsequent analyses on these classified white matter

racts, as we were interested in identifying which fascicles predict the
patial layout of reading-related responses in lateral VTC. We focused on
hose 6 fascicles that connect the temporal lobe with other parts of the
rain and therefore may originate or end in lateral VTC ( Fig. 1 c ). These
racts are: i) the uncinate fasciculus (UCIF), ii) the inferior frontal occip-
tal fasciculus (IFOF), iii) the inferior longitudinal fasciculus (ILF), iv)
he arcuate fasciculus (AF), v) the posterior arcuate fasciculus (pAF) and
i) the vertical occipital fasciculus (VOF). In order to determine which
f these fascicles are predictive of reading-related responses, we first
apped the endpoint density of each fascicle onto the cortical surface.
he resulting endpoint density maps indicate the amount of streamlines
hat terminate at the gray-white matter interface adjacent to each cor-
ical vertex (for details see: Calamante et al., 2010 ; Smith et al., 2012 ).

e hypothesized, that reading-related responses in lateral VTC may co-
ocalize with those fascicles that play a role in connecting this part of
he reading network to the rest of the brain, but not other fascicles. As
uch, we used the endpoint densities of each fascicle at each vertex in
ateral VTC as predictors in linear models of reading-related responses. 

.6. Quantitative MRI data acquisition and preprocessing 

Quantitative MRI (qMRI, Mezer et al., 2013 ) data was collected
ithin the same session and with the same head coil as the dMRI data.
 1 relaxation times were measured from four spoiled gradient echo im-
ges with flip angles of 4°, 10°, 20° and 30° (TR: 14 ms, TE: 2.4 ms).
he resolution of these images was later resampled from 0.8 × 0.8 × 1.0
m 

3 to 1mm isotropic voxels, and qMRI data was aligned with the high-
esolution anatomical scan using rigid body transformation. We also col-
ected four additional spin echo inversion recovery (SEIR) scans with an
cho planar imaging read-out, a slab inversion pulse and spectral spatial

https://github.com/VPNL/predictFuncFromStructCode
http://github.com/vistalab
http://www.fil.ion.ucl.ac.uk/spm
http://github.com/vistalab/vistasoft
https://fsl.fmrib.ox.ac.uk/
http://www.mrtrix.org/
https://surfer.nmr.mgh.harvard.edu/
https://github.com/yeatmanlab/AFQ
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at suppression (TR: 3 s, resolution: 2 mm x 2 mm x 4 mm, 4 echo time
et to minimum full, 2x acceleration, inversion times: 50, 400, 1200,
nd 2400 ms). The purpose of these SEIRs was to remove field inhomo-
eneities. 

Both the spoiled gradient echo and the SEIR scans were processed
sing the mrQ software package ( https://github.com/mezera/mrQ ) for
atlab to estimate the proton relaxation time (T 1 ) in each voxel, as in

revious studies ( Gomez et al., 2017 ; Grotheer et al., 2019 ; Mezer et al.,
013 ; Yeatman et al., 2014a ). The mrQ analysis pipeline corrects for RF
oil bias using the SEIRs scans, which produces accurate T 1 fits across
he brain. The T 1 map of each subject was co-registered to the same
natomical whole-brain volume as the dMRI and fMRI data and mapped
o the inflated cortical surface of each participant ( Fig. 1 d ). We used the
 1 maps to evaluate if gray matter tissue microstructure contributes to
he prediction of reading-related responses. For this, T 1 at each vertex
ithin the anatomical boundary of lateral VTC was used as an additional
redictor in linear models of reading-related responses. 

.7. Linear model: feature selection 

In order to determine if white and gray matter anatomy predict the
patial layout of reading-related responses, we derived linear models
hat relate the endpoint density of fascicles as well as gray matter T 1 to
eading-related responses. In our models, we z-scored both the reading-
elated responses as well as the anatomical predictors in order to con-
rol for inter-subject variability. First, using a randomly selected subset
f 10 out of 30 participants (the feature selection set), we evaluated
hich white and gray matter features best predict reading-related re-

ponses (i.e. the difference in responses elicited by the reading task and
he adding and color tasks) in lateral VTC. During this feature selec-
ion, we evaluated which white matter fascicles are predictive of the
ap of reading-related responses by deriving separate linear models

elating the reading-related response map to each fascicle’s endpoints
n lateral VTC. We tested how well the endpoint density of each fasci-
le at each vertex within the anatomically defined lateral VTC predicts
eading-related responses using leave-one-subject-out cross-validation.
hat is, we derived the model using data of all but one subject and then
redicted responses in the left-out subject, iterating across all partici-
ants. In order to assess the performance of the model, we then mea-
ured the correlation between the predicted to the measured reading-
elated response map in the left-out subject. We used Bonferroni cor-
ected t-tests to evaluate if the correlation between the predicted and
easured reading-related responses is significantly greater than 0. Fi-
ally, those fascicles that lead to significant predictions were combined
nto a new linear model that we will refer to as the combined fascicle
odel. 

We tested if different fascicles capture independent variance in the
eading-related responses by evaluating if the combined fascicle model
a weighted sum of the endpoints of the AF, ILF and VOF) outper-
orms the best individual fascicle model. For this, first, we fit a new
inear model that uses the endpoints of the AF, ILF and VOF as pre-
ictors. Next, we compared predicted and measured reading-related re-
ponses in leave-one-subject-out cross-validations, as described above.
e used Bonferroni corrected t-tests to evaluate if the correlation be-

ween the predicted and measured reading-related responses is signif-
cantly greater than 0 in each model. Next, we derived both models
sing the data of all 10 participants and formally tested if the combined
ascicle model outperforms the best individual fascicle model using a
imulated likelihood ratio test with 1000 simulations. Given that this
nalysis indicated the combined fascicle model to outperform the indi-
idual fascicle models, we used the combined fascicle model in further
teps. 

After determining which fascicles are predictive of reading-related
esponses, in the last step of the feature selection, we assessed whether
nformation about tissue properties in the gray matter, i.e., T 1 at each
ertex, improves the prediction of reading-related responses relative to
5 
he combined fascicles model. First, we tested if T 1 is an informative pre-
ictor of reading-related responses on its own, by training a new linear
odel with just this one predictor and then correlating the predicted and

he measured reading-related responses in leave-one-subject-out cross-
alidations, as above. Next, we added T 1 as an additional predictor to
he combined fascicle model and compared predicted and measured
eading-related responses in leave-one-subject-out cross-validations for
he combined fascicle model and the combined fascicle + T 1 model. We
sed Bonferroni corrected t-tests to evaluate if the correlation between
he measured reading-related responses and those predicted by each
odel is significantly greater than 0. We tested if the model that in-

ludes T 1 outperforms the combined fascicle model using a simulated
ikelihood ratio test with 1000 simulations. Given that these analyses
ndicated T 1 at each vertex to be an informative predictor, we added
his predictor to our final model, which we refer to as fascicles + T 1 . 

.8. Linear model: model validation 

To ensure independence of feature selection and model testing, we
ested the predictiveness of the fascicles + T 1 model in the remaining 20
articipants (validation set). For this, at each vertex, we compared the
easured reading-related responses with the responses predicted by the

ascicles + T 1 model using leave-one-subject-out cross-validation in the
ndependent subjects. We used a t-test to evaluate if the correlation be-
ween the predicted and measured reading-related responses is signifi-
antly greater than 0. 

We also assessed whether the predictiveness of our model depends
n the selectivity of each vertex. Thus, in each participant’s lateral VTC
e identified the 10, 20 and 30% vertices with the strongest prefer-

nce for reading, those with the strongest preference against reading
nd those with no strong preference (based on absolute z-score). These
ets of vertices where identified in both the measured and the predicted
eading-related response maps. Then, we assessed the spatial overlap
etween measured and predicted vertices using the dice coefficient DC
 Dice, 1945 ): 𝐷𝐶 = 

2 |𝐴 ∩𝐵 |
|𝐴 |+ |𝐵| , where |A| is the measured vertices, |B| is

he predicted vertices and |A ∩B| is the intersection between these two
ets of vertices. Additionally, we calculated what is the chance level DC
y randomly selecting 10, 20 and 30% of lateral VTC vertices in the pre-
icted map and calculating the overlap between these randomly chosen
ertices and those vertices that show the strongest preference for read-
ng in the measured reading-related responses. Finally, we tested the
ignificance of the prediction by comparing the measured DCs to the
hance level DC for the 20% sets of vertices, using Bonferroni corrected
-tests. We only performed the t-tests on the 20% sets of vertices and not
he 10% and 30% sets, as these three sets are not independent (10% is
 subset of 20, which is a subset of 30%). 

.9. Linear discrimination analysis 

We also tested how well the anatomical features chosen above (i.e.,
he endpoint density of the ILF, AF, VOF in combination with cortical
 1 ), predict the location of the VWFA-2 in the validation set. For this,
e used a linear discrimination analysis (LDA) and derived a linear clas-

ifier that uses fascicle endpoints and T 1 to determine which vertices in
ateral VTC are within the VWFA-2 and which are outside this fROI. We
sed a leave-one-subject-out cross-validation approach iterating across
hose 20 subjects not used during feature selection. To determine the
ccuracy of this classifier, first, we visually compared the predicted and
he measured VWFA-2 fROIs on the cortical surface of each held-out
ubject. Next, we assessed the prediction accuracy by quantifying the
patial overlap between the predicted and the measured VWFA-2 using
he DC. We also performed a similar analysis using a 7mm disk ROI
radius was chosen to match the average radius of the fROIs) placed in
he center of the VWFA-2 to test whether our model predicts only the
ocation of the VWFA-2 or also its shape. We reasoned that, if white and

https://github.com/mezera/mrQ
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ray matter anatomy also predict the shape of the VWFA-2, the predic-
ion of the disk ROI should be significantly worse than the prediction
f the VWFA-2 fROI. As a control, we generated a chance level DC by
andomizing the vertices that are within and outside of the predicted
WFA-2 and quantifying the spatial overlap between these randomly
hosen vertices and the measured VWFA-2. 

Finally, to assess if the predicted VWFA-2 responds more strongly
o the reading task than the adding and color tasks, i.e. shows the de-
ired preference for reading, we extracted the responses of the predicted
WFA-2 during the fMRI experiment in each held-out subject. We used
epeated measures ANOVA’s with task and stimulus as factors to evalu-
te the effect of the performed task and the stimulus on neural responses
ithin the predicted VWFA-2 fROI. 

.10. Data and code availability 

The fMRI and qMRI data were analyzed using the open source
rVista software (available in GitHub: http://github.com/vistalab/

istasoft ) and mrQ software (available in GitHub: https://github.com/
ezera/mrQ ) packages, respectively. The dMRI data were analyzed us-

ng open source software, including MRtrix3 ( Tournier et al., 2012 )
 http://www.mrtrix.org/ ) and AFQ ( Yeatman et al., 2012b ) ( https://
ithub.com/yeatmanlab/AFQ ). We make the entire pipeline freely avail-
ble; custom code for dMRI preprocessing, tractography and further
nalyses are available in GitHub ( https://github.com/VPNL/fat ). Code
or reproducing all figures and statistics are made available in GitHub as
ell ( https://github.com/VPNL/predictFuncFromStructCode ). The data
enerated in this study will be made available by the corresponding au-
hor upon reasonable request. 

. Results 

.1. Endpoints of the ILF, AF, and VOF predict reading-related responses 

In the current study we tested the hypothesis that white matter fas-
icles and cortical microstructure (T 1 ) predict where reading-related re-
ponses fall in lateral ventral temporal cortex (lateral VTC) in a given
dult individual. First, during feature selection, we evaluated which
hite matter fascicles predict reading-related responses in lateral VTC.
ix fascicles connect to the temporal lobe: i) the uncinate fasciculus
UCIF), ii) the inferior frontal occipital fasciculus (IFOF), iii) the infe-
ior longitudinal fasciculus (ILF), iv) the arcuate fasciculus (AF), v) the
osterior arcuate fasciculus (pAF), and vi) the vertical occipital fascicu-
us (VOF). We automatically identified these fascicles in each individ-
al and mapped their endpoint density to the cortical surface within an
natomical boundary of lateral VTC. We then visually inspected the re-
ulting endpoint density maps ( Fig. 2 a shows each of these maps in
 representative subject). Across subjects, we found that i) the end-
oints of the ILF, AF, and pAF are distributed across most of lateral
TC, ii) the VOF and IFOF have endpoints only in the posterior end
f lateral VTC, and iii) the UCIF rarely has any endpoints in lateral
TC. 

To determine which of these fascicles are predictive of reading-
elated responses, we next derived linear models that relate reading-
elated responses in lateral VTC to endpoint density separately for each
f these fascicles. We trained one model for each fascicle and evalu-
ted the performance of the model using leave-one-subject-out cross-
alidation. Each model’s performance was evaluated by correlating the
redicted responses with the measured reading-related responses in
ach held-out participant. Results of this analysis show that the end-
oint density of the ILF, AF, and VOF predict reading-related responses
n lateral VTC. That is, linear models relating the endpoints of each
f these fascicles to reading-related responses show a significant cross-
alidated correlation between the predicted and measured responses
t-tests against 0 with a Bonferroni adjusted threshold of p ≤ 0.008;
6 
LF: p = 0.007, AF: p = 0.007, VOF: p = 0.003; Fig. 2 b ; mean R ± SE: ILF:
.19 ± 0.05, AF: 0.18 ± 0.05, VOF: 0.16 ± 0.04). 

To better understand the relationship between each significant fasci-
le’s endpoint density and reading-related responses, next, we compared
he endpoint density maps described above ( Fig. 2 a shows these maps in
 representative subject) with the meassured reading-related responses
 Fig. 2 c-meassured shows a representative subject; see Supplementary

ig. 1a for correlations between these maps). We find that regions in lat-
ral VTC that have a high endpoint density for the AF and ILF (red in
ig. 2 a ) coincide with regions that show a preference for reading (red in
ig. 2 c -measured). In contrast, regions that show high endpoint density
or the VOF (red in Fig. 2 a ), which predominantly showed endpoints
n the posterior end of lateral VTC, showed a negative preference for
eading (blue in Fig. 2 c -measured). 

Our data suggests that the endpoints of the ILF, AF, and VOF can
redict reading-related responses in lateral VTC. However, an open
uestion is whether these fascicles provide overlapping or complimen-
ary predictions of reading-related responses. The latter seems plausi-
le as the endpoint densities of these three fascicles have different dis-
ributions across lateral VTC ( Fig. 2 a ) and generated different predic-
ions of reading-related responses ( Fig. 2 c ). To test these possibilities,
e generated a new linear model that relates responses during read-

ng to a weighted combination of ILF, AF, and VOF endpoints in lat-
ral VTC. Then, we compared the performance of this combined model
nd the best individual fascicle model using leave-one-subject-out cross-
alidation in the 10 subjects used for feature selection. We find that a
inear model with three fascicles improved prediction of reading-related
esponses. That is, there is a higher correlation between the predicted
nd measured reading-related responses compared to a linear model
ased on a single fascicle (mean R ± SE: best individual fascicle (ILF):
.19 ± 0.05, combined fascicle model: 0.27 ± 0.03; Fig. 3 a ; example
rediction in a representative individual in Fig. 3 b ). This improvement
s statistically significant (p = 0.001, simulated likelihood ratio test com-
aring models derived from the data of all 10 participants). 

Overall, this analysis indicates a consistent spatial relationship be-
ween the endpoint densities of the AF, ILF, and VOF and reading-related
esponses in lateral VTC. 

.2. Cortical tissue microstructure improves prediction of reading-related 

esponses 

Next, as the last step of feature selection, we tested whether cortical
issue microstructure in lateral VTC, assessed by T 1 relaxation time, fur-
her improves the prediction of reading-related responses compared to
he combined fascicle model. We reasoned that gray matter microstruc-
ure may covary with reading-related responses and that regions with
igh reading-related responses may show a different microstructure
han other parts of lateral VTC. 

First, using qMRI, we estimated T 1 at each vertex in lateral VTC and
hen evaluated if T 1 by itself is an informative predictor of reading-
elated responses. To this end, we derived a linear model with just this
ne predictor and compared predicted and measured reading-related
esponses in leave-one-subject-out cross-validations in the same 10 sub-
ects as in the prior analyses. We find that the predicted and mea-
ured reading-related responses correlate significantly (t-tests against
, p = 0.01, mean R ± SE: 0.14 ± 0.04), suggesting that cortical T 1 on its
wn is a significant predictor of reading-related responses (see Supple-

entary Fig. 1b for correlations between reading-related responses and
ortical T 1 ). Next, we added the T 1 value at each vertex as an addi-
ional predictor to the combined fascicle model, to assess if cortical T 1 

an improve the prediction of reading-related responses compared to
 model based on fascicles alone. We found that this model’s predic-
ion of reading-related responses was significantly correlated with the
easured responses in the left out subjects ( Fig. 3 a , t-tests against 0
ith a Bonferroni adjusted threshold of p ≤ 0.025, p < 0.0001), which is
lso evident when visually comparing the spatial layout of the measured

http://github.com/vistalab/vistasoft
https://github.com/mezera/mrQ
http://www.mrtrix.org/
https://github.com/yeatmanlab/AFQ
https://github.com/VPNL/fat
https://github.com/VPNL/predictFuncFromStructCode
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Fig. 2. Endpoints of ILF, AF, and VOF pre- 

dict reading-related responses in lateral VTC. 

a. Maps of endpoint density for UCIF, IFOF, 

ILF, AF, pAF, and VOF presented on the in- 

flated cortical surface of a representative par- 

ticipant. Black outline indicates anatomically 

defined lateral VTC. b. The endpoint den- 

sity of each fascicle was used to train a lin- 

ear model to predict reading-related responses. 

Panel b shows the correlation between the pre- 

dicted and measured reading-related responses 

in leave-one-subject-out-cross-validation anal- 

yses. ∗ = significant correlation between pre- 

dicted and measured reading-related responses 

in left-out subject (R significantly above 0; 

Bonferroni corrected threshold of p ≤ 0.008). c. 

Maps of the measured and predicted reading- 

related responses for each of the fascicles 

that showed significant predictions, presented 

on the inflated cortical surface of a repre- 

sentative subject. Abbreviations: UCIF = uncinate 

fasciculus, IFOF = inferior frontal occipital fas- 

ciculus, ILF = inferior longitudinal fasciculus, 

AF = arcuate fasciculus, pAF = posterior arcuate 

fasciculus, VOF = vertical occipital fasciculus. 

Fig. 3. Linear model based on fascicle end- 

point densities and cortical T 1 best predicts 

reading-related responses in lateral VTC. a. 

Correlation between predicted and measured 

reading-related responses for two linear mod- 

els: left: linear model based on the endpoint 

densities of the ILF, AF, and VOF (the com- 

bined fascicle model); right: linear model based 

on the endpoint densities of the ILF, AF, and 

VOF as well as cortical T 1 (the fascicle + T 1 
model). ∗ = Significant correlation between pre- 

dicted and measured reading-related responses 

in leave-one-subject-out cross-validation (R sig- 

nificantly above 0; Bonferroni corrected thresh- 

old of p ≤ 0.025). Model comparison showed 

that the fascicle + T 1 model outperforms the combined fascicle model (likelihood ratio test, p = 0.001). b. Maps of measured and predicted reading-related re- 

sponses for each model, presented on the inflated cortical surface of a representative subject. Black outline indicates anatomically defined lateral VTC. Abbreviations : 

T 1 = proton relaxation time. 
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eading-related responses with the predicted responses ( Fig. 3 b shows
 representative subject). It should be noted though, that the fascicles
hat are included in the fascicle + T 1 model were chosen based on the
ame 10 subjects that the model was then tested on; we will further in-
estigate the fascicle + T 1 model’s performance on independent data (the
alidation set) in the next sections (see Supplementary Figure 2 for a
omparison of model coefficients in individuals of the feature selection
nd validation sets). 

Crucially, we found that adding gray matter T 1 to the combined fas-
icle model improved the prediction of reading-related responses in lat-
ral VTC (mean R ± SE: combined fascicle model: 0.27 ± 0.03, combined
ascicle + T 1 model: 0.29 ± 0.04). This improvement was statistically sig-
ificant (p = 0.001, simulated likelihood ratio test comparing models de-
ived from the data of all 10 participants). Results of this analysis sug-
ests that cortical T 1 explains independent variance in the spatial layout
f reading-related responses, which is not captured by the white matter
ascicles. 

Together, these analyses suggest that the endpoint densities of the
F, ILF and VOF as well as cortical microstructure assessed with T 1 

how a consistent spatial relationship with reading-related responses in

ateral VTC across individuals. t  

7 
.3. Model based on fascicle endpoints and cortical T 1 predicts both the 

eaks and the troughs of reading-related responses 

To further assess the robustness of the fascicles + T 1 model, dur-
ng model validation, we tested how well this model predicts reading-
elated responses in 20 new participants. First, we tested how well the
ombined model – the linear model that uses AF, ILF, VOF and cortical
 1 as predictors – captures the map of reading-related responses in this

ndependent data, again using leave-one-subject-out cross-validation.
esults reveal that, on average, the predicted and the measured reading-
elated responses in each held-out subject correlate significantly above
hance ( Fig. 4 shows measured and predicted maps side-by-side in 3 ex-
mple subjects; mean across all 20 participants R ± SE: 0.28 ± 0.03; mean
 was significantly greater than 0, t-test, p < 0.0001). This analysis con-
rms the predictive nature of these combined features of the white and
ray matter anatomy in 20 new participants. 

Next, in addition to our evaluation of the entire VTC above, we also
ssessed whether the fascicles + T 1 model best predicts the vertices with
he strongest reading-related responses (referred to as vertices with a
reference for reading, red in Fig. 5 ), or whether it predicts vertices
hat have a preference for the other tasks (preference against reading,
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Fig. 4. Endpoints of AF, ILF, and VOF in combination with cortical T 1 pre- 

dict reading-related responses in lateral VTC. Left : Measured reading-related re- 

sponses in three example participants from the validation set. Right: Predicted 

reading-related responses from the same participants. The predicted maps were 

created using leave-one-subject-out cross-validation with a linear model that 

combines the endpoint density of the ILF, AF, and VOF with cortical T 1 . Black 

outline indicates anatomically defined lateral VTC. 

Fig. 5. Endpoints of AF, ILF, and VOF in combination with cortical T 1 pre- 

dict peaks and troughs of reading-related responses in lateral VTC. Left: Dice 

coefficient (DC) analysis comparing the predicted and the measured responses 

in the 10%, 20%, and 30% vertices with the strongest preference for reading, 

the strongest preference against reading and those without a strong prefer- 

ence. Right: Spatial layout of these groups of vertices as well as the reading- 

related responses in an example subject. Black outline indicates anatomically 

defined lateral VTC. Analysis shows that the combined fascicle + T 1 linear 

model significantly predicts the location of both the peaks and the troughs 

of reading-related responses, but not the intermediate responses. Abbreviations: 

T 1 = proton relaxation time, ILF = inferior longitudinal fasciculus, AF = arcuate fas- 

ciculus, VOF = vertical occipital fasciculus, DC = dice coefficient. 
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lue in Fig. 5 ), or those with no strong preference ( green in Fig. 5 )
qually well. Thus, in each participant’s lateral VTC, we identified the
op 10%, 20% and 30% vertices that show the strongest preference for
eading, both for the measured reading-related responses and for the
eading-related responses predicted by the fascicles + T 1 model. Then,
e quantified their overlap using the dice coefficient (DC, Dice, 1945 ).
e found substantial spatial overlap between the measured and the pre-

icted 10, 20, and 30% vertices with the strongest preference for reading
 Fig. 5 -red, DC ± SE: 10%: 0.20 ± 0.02, 20%: 0.34 ± 0.02, 30%: 0.44 ± 0.01;
-tests performed on 20% vertices are significantly above chance with a
onferroni adjusted threshold of p ≤ 0.01), suggesting that this model ac-
urately captures those vertices that show a strong preference for read-
ng, or in other words, the peaks of reading-related responses. 
8 
Next, we evaluated if the significant overlap between measured and
redicted responses is specific to those vertices with the highest reading-
elated responses, or if the fascicles + T 1 model also predicts those ver-
ices with the lowest reading-related responses, i.e. vertices that show
igher responses during the adding and color tasks than during the read-
ng task. We followed the procedure as described above and found high
patial overlap between the measured and the predicted 10%, 20% and
0% vertices with a preference against reading ( Fig. 5 -blue, DC ± SE:
0%: 0.23 ± 0.03, 20%: 0.31 ± 0.02, 30%: 0.41 ± 0.02; t-tests performed
n 20% vertices are significantly above chance with a Bonferroni ad-
usted threshold of p ≤ 0.01), suggesting that the fascicles + T 1 model also
ccurately predicts the troughs of reading-related responses. 

Finally, we also tested how well the model predicts vertices that have
either a strong preference for reading or a strong preference against
eading. In contrast to vertices with strong positive or negative prefer-
nces, the prediction of 10, 20, 30% vertices with weak preferences did
ot differ from chance ( Fig. 5 -green , DC ± SE: 10%: 0.11 ± 0.005, 20%:
.21 ± 0.007, 30%: 0.32 ± 0.008; t-tests performed on 20% not signifi-
antly different from chance). Together, these data show that our model
ccurately captures both the peaks and the troughs of reading-related
esponses in lateral VTC. 

.4. Fascicle endpoints and cortical T 1 predict the location of the visual 

ord form area 

The visual word form area (VWFA, Cohen et al., 2000 ; Dehaene and
ohen, 2011 ), a functional region of interest (fROI) in the occipito-
emporal sulcus (OTS), plays a critical role in reading ( Gaillard et al.,
006 ). The VWFA has two clusters in the left hemisphere: one on
he posterior OTS (also referred to as pOTS-words/VWFA1) and one
n the mid OTS (also referred to as mOTS-words/VWFA-2) ( Lerma-
sabiaga et al., 2018 ). Since our reading-related fROI coincides with
WFA-2 ( Grotheer et al., 2018 ), we tested if our fascicles + T 1 model
an also accurately predict the location and boundaries of this region in
ndividual subjects. 

To this end, first, we identified the VWFA-2 by selecting those vox-
ls in the mid OTS (mOTS) that show significantly higher responses in
he reading task than the adding and the color tasks (threshold: T ≥ 3,
oxel-level) in each of the 20 participants used for model testing. We
hen performed linear discrimination analyses (LDAs) with a combined
ascicles + T 1 classifier to distinguish vertices that are part of the VWFA-2
rom those that are not part of the VWFA-2. As before, we used 20-fold
eave-one-subject-out cross-validation. Within each participant, we first
lotted the measured and the predicted VWFA-2 side-by-side and visu-
lly inspected their spatial correspondence. We find that there is varying
verlap between the predicted and the measured VWFA-2 across sub-
ects, with some participants showing almost perfect overlap and some
ubjects showing more misclassifications ( Fig. 6 a visualizes this range
y showing the participants with the most overlap, the least overlap and
verage overlap). Interestingly, even in participants with average or no
verlap between measured and predicted fROI, the predicted fROI still
enerally falls within the anatomical boundaries of the mOTS and hence
n a biologically plausible location. 

Next, we used the DC to quantify the spatial overlap between the pre-
icted and the measured VWFA-2 in each participant and compared the
easured DC to the chance level DC. Results show that the fascicles + T 1 

odel predicts the location of the VWFA-2 significantly above chance
t-test, p = 0.01, significantly above Bonferroni corrected threshold of
 < 0.03, Fig. 6 b ). In order to evaluate if the combined model is infor-
ative only about the location or also about the shape of the fROI, we

lso performed the same analysis with a 7mm disk ROI placed in the
enter of each participant’s VWFA-2 fROI. We found that the overlap
etween the predicted and the measured disk ROI is significantly above
hance (t-test, p = 0.01, significantly below Bonferroni corrected thresh-
ld of p < 0.03, Fig. 6 b ) and that there is no difference in prediction
ccuracy between the VWFA-2 and the disk fROI (t-test, p = 0.61). This
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Fig. 6. Endpoints of AF, ILF, and VOF in com- 

bination with cortical T 1 predict the location 

the VWFA-2. a. Comparison of predicted and 

measured VWFA-2 in three representative par- 

ticipants illustrating the range of predictions. 

The fROI was predicted using linear discrimi- 

nant analysis (LDA) with leave-one-subject-out 

cross-validation and a model that combines T 1 
with the endpoint densities of the ILF, AF and 

VOF. Black outline indicates anatomically de- 

fined lateral VTC. b. Dice coefficient (DC) anal- 

ysis quantifying the spatial overlap between the 

predicted and the measured fROIs for i) the 

VWFA-2 ( left ) and ii) a 7mm disk placed in 

the center of the VWFA-2 ( right ). ∗ = DC sig- 

nificantly greater than chance, Bonferroni cor- 

rected threshold of p ≤ 0.025; chance level in- 

dicated by red circle. c. Mean responses of the 

predicted VWFA-2 during the reading, adding 

and color tasks performed on number morphs 

(N) and letter morphs (L). ◊= significant 

main effect of task, repeated measures ANOVA, 

p ≤ 0.05. Abbreviations: fROI = functional region 

of interest, LDA = linear discrimination anal- 

ysis, T 1 = proton relaxation time, ILF = inferior 

longitudinal fasciculus, AF = arcuate fasciculus, 

VOF = vertical occipital fasciculus, DC = dice co- 

efficient, mOTS = mid occipito-temporal sulcus, 

N = number, L = letter. 
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uggests that the combined model accurately predicts the location, but
ot the shape of the reading-related fROI in mOTS. 

Finally, we tested if the predicted VWFA-2 shows the expected pref-
rence for the reading task over the adding and color tasks. To this
nd, we extracted the responses for each of the tasks from the predicted
ROI in each participant. Results show that responses in the predicted
WFA-2 were higher during the reading than the color and the adding

asks ( Fig 6 c ). This difference was statistically significant (main effect
f task, repeated measures ANOVA with task and stimulus as factors:
(2,38) = 8.24, p = 0.001). Moreover, similar to VWFA-2 in our previous
ork using the same functional experiment ( Grotheer et al., 2018 ), the
redicted VWFA-2 showed a task by stimulus interaction (repeated mea-
ures ANOVA: F(2,38) = 5.93, p = 0.006). The response characteristics of
he predicted VWFA-2 fROI hence closely match those observed for mea-
ured VWFA-2 fROIs. 

Overall, our data show that the endpoints of the ILF, AF, and VOF
n combination with cortical T 1 predict reading-related responses across
ateral VTC as well as the location of the VWFA-2. 

. Discussion 

In the current study, we used a multimodal approach to test the hy-
othesis that white matter fascicles and gray matter microstructure co-
ary with reading-related responses in the lateral ventral temporal cor-
ex (lateral VTC). We find that i) the endpoint densities of the arcuate
asciculus (AF), inferior longitudinal fasciculus (ILF), and vertical occip-
tal fasciculus (VOF) predict reading-related responses, ii) gray matter
icrostructure, as assessed by proton relaxation time (T 1 ) further im-
roves the prediction of reading-related-responses, compared to using
nly information from endpoints of white matter fascicles, and iii) a
odel that combines the endpoints of the AF, ILF, and VOF with corti-

al T 1 accurately predicts the map of reading-related responses in lateral
TC as well as the location of the visual word form area, a category-
elective region that plays a critical role in reading. 

Previous research has provided compelling evidence for the role of
hite matter connections in driving the consistent organization of func-

ional regions in VTC ( Bi et al., 2015 ; Osher et al., 2016 ; Saygin et al.,
016 , 2012 ), including the development of reading-related responses
9 
uring childhood ( Saygin et al., 2016 ). Most previous studies relied
n estimating the “white matter fingerprint ”, an approach that utilizes
rain parcellations (e.g., anatomical parcels from FreeSurfer) and mea-
ures the amount of pairwise white matter tracts between each func-
ional voxel in one parcel to all other cortical parcels. A weighted sum
f these pairwise connections is used as a predictor for that voxel’s func-
ional responses ( Osher et al., 2016 ; Saygin et al., 2016 , 2012 ). While
he prior approach has been important for showing that there are signifi-
ant relationships between white matter tracts and functional responses,
t did not reveal whether there is a correspondence between specific,
nown white matter fascicles and the spatial layout of reading-related
esponses in lateral VTC. By developing a new approach that uses well-
stablished components of the human brain’s white matter anatomy,
pecifically, the major white matter fascicles of the brain, as predictors
f functional responses, the current study elucidates the systematic cou-
ling between functional activations and white matter fascicles for the
rst time. 

We found that three fascicles of the brain, the AF, ILF, and VOF,
redict the spatial layout of reading-related responses in lateral VTC,
uggesting that these fascicles play an important role in the visual com-
onents of the reading network. Diffusion properties of these fascicles
ave previously been correlated with people’s performance in reading
asks, supporting the notion that they play a critical role in connect-
ng different parts of the reading network. First, atypical development
f FA in the ILF is associated with poor reading proficiency ( Su et al.,
018 ; Yeatman et al., 2012a ). Moreover, lesions to the ILF have been
ssociated with pure alexia ( Epelbaum et al., 2008 ), thereby highlight-
ng this fascicle as essential for reading. Further, fractional anisotropy
FA) in the left AF is related to reading ability during childhood devel-
pment ( Wang et al., 2017 ) and correlates with phonological aware-
ess in both typical ( Yeatman et al., 2011 ) and impaired ( Su et al.,
018 ; Vandermosten et al., 2012 ) readers. Finally, the VOF, which has
een re-discovered recently ( Takemura et al., 2016 ; Weiner et al., 2016 ;
eatman et al., 2014b ), is proposed to carry top-down feedback sig-
als during reading ( Kay and Yeatman, 2017 ), and diffusion measures
n this tract have also been linked to early literacy skills in children
 Broce et al., 2019 ). It is important to note that, in the current study, we
id not assess the reading performance of our participants. Future stud-
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es could test whether linear models based on brain structure can also
redict reading performance. Further, here we only focus on the struc-
ural connection of the lateral VTC, which harbors one part of a larger
etwork involved in reading ( Ben-Shachar et al., 2007 ; Grotheer et al.,
019 ; Wandell and Le, 2017 ). Future studies could further explore if the
ame or different fascicles are predictive of reading-related responses in
ther parts of the network. 

Interestingly, our data shows that even though the AF, ILF, and VOF
re all predictive of the spatial layout of reading-related responses, high
ndpoint densities of the AF and ILF predicts vertices showing high
esponses during reading, whereas high endpoint density of the VOF
nstead predicts low responses during reading. While previous studies
gree that the AF and ILF connect to the VWFA ( Bouhali et al., 2014 ;
rotheer et al., 2019 ; Yeatman et al., 2013 ), a region in lateral VTC that

hows a preference for reading, there have been conflicting results on
hether or not the VOF connects to this region ( Bouhali et al., 2014 ;
rotheer et al., 2019 ; Yeatman et al., 2013 ). These conflicting results
an likely be explained by the fact that the VWFA is divided into two
istinct regions, VWFA-1 and VWFA-2, also referred to as pOTS-words
nd mOTS-words, respectively, which show different connectivity to the
OF ( Lerma-Usabiaga et al., 2018 ). Here, we focused only on the VWFA-
, as VWFA-1 could not be identified consistently when comparing re-
ponses in a reading task with responses during other tasks performed
n identical visual stimuli. This matches findings that the VWFA-1 is
 more “perceptual ” visually-driven region, whereas the VWFA-2 is a
igher-level region involved in lexical / semantic processing of words
 Lerma-Usabiaga et al., 2018 ). This, in turn, is in line with the proposal
f a posterior-to-anterior gradient in processing level related to reading
long the lateral VTC ( Taylor et al., 2019 ; Vinckier et al., 2007 ). While
he VWFA-1 is thought to be connected to the VOF, the more anterior
WFA-2, which was investigated in the current study, is not thought

o be connected to the VOF ( Lerma-Usabiaga et al., 2018 ). These prior
ndings together with our present findings of low reading-related re-
ponses in vertices that have a high endpoint density of the VOF suggest
 differential pattern of white matter connections across VWFA-1 and
WFA-2. This hypothesis can be further evaluated in future research. 

The current work has implications for our understanding of the
eural underpinnings of reading. Given that the ILF, AF, and VOF
re predictive of the spatial layout of reading-related responses, and
hite matter structure constraints reading-related responses during de-
elopment ( Saygin et al., 2016 ), these fascicles likely play a causal
ole in scaffolding the neural architecture required for reading. Fu-
ure studies in atypical populations, for instance those evaluating chil-
ren with dyslexia (e.g. Kraft et al., 2016 ; Niogi and McCandliss, 2006 ;
anderauwera et al., 2017 ; Yeatman et al., 2012a ; Zhao et al., 2016 ),
ould test if structural abnormalities in these fascicles precede and pre-
ict difficulties in reading acquisition and whether these abnormalities
ay result in subtle differences in the spatial layout of reading-related

esponses in lateral VTC (e.g. Kubota et al., 2019 ). Another interest-
ng direction for future research would be to probe if short-range white
atter connections (e.g. Gomez et al., 2015 ), which are not considered
ere, also contribute to the spatial layout of reading-related responses
n VTC. Rather than evaluating the entire white matter connectome, as
n the fingerprinting approach, we would suggest a more targeted ap-
roach that evaluates the contribution of pairwise connections between
unctional regions of interest ( Grotheer et al., 2019 ), as such data would
e more easily interpretable. 

In the current study, in addition to investigating the role of the white
atter, we also began to explore the additional hypothesis that the lo-

al gray matter tissue properties contribute to the consistent spatial lay-
ut of reading-related response in lateral VTC. The notion that differ-
nces in microstructure across cortical regions may co-localize with dif-
erent functional regions dates back to the very birth of neuroscience
 Brodmann, 1909 ). Recent methodological improvements, particularly
he development of quantitative MRI ( Lutti et al., 2014 ; Mezer et al.,
013 ), now enable us to test this prediction in vivo , for the first time.
10 
e found that proton relaxation time (T 1 ) at each vertex, measured
ith qMRI, improves the prediction of reading-related responses com-
ared to a model that relies only on white matter fascicles. This aligns
ell with previous work showing that i) VTC contains several distinct

ytoarchitectonic regions ( Caspers et al., 2013 ; Lorenz et al., 2017 ),
i) functional regions in VTC co-localize with cytoarchitectonic regions
 Weiner et al., 2017 ), and iii) T 1 varies between different functional re-
ions in VTC ( Gomez et al., 2017 ; Natu et al., 2019 ). However, it has
lso been shown that T 1 changes during development and correlates
ith task performance ( Gomez et al., 2017 ). Thus, an open question

s whether T 1 development precedes reading acquisition and the emer-
ence of reading-related functional activations, as is the case for white
atter connectivity ( Saygin et al., 2016 ), or whether reading acquisition

nstead changes the local tissue microstructure, for instance due to tis-
ue proliferation. In the latter case, the predictiveness of T 1 would be a
onsequence rather than a cause of the consistent organization of lateral
TC. The current work in adults should be considered a proof-of-concept

hat gray matter tissue structure can predict functional responses in VTC
nd future developmental work can investigate if gray matter structure
onstrains the organization of VTC during development. Such studies
ould go beyond T 1 measurements and probe the predictive value of var-
ous different aspects of the gray matter structure that can be assessed
n vivo , including both gray matter microstructure, such as myelination
 Lutti et al., 2014 ; Natu et al., 2019 ; for review see Edwards et al., 2018 ;
eiskopf et al., 2015 ), as well as, macrostructure, such as cortical fold-

ng ( Weiner et al., 2018 , 2014 ) and cortical thickness ( Natu et al., 2019 ;
owell et al., 2004 , 2003 ). 

In conclusion, the current study showed that cortical terminations
f three key fascicles, the AF, ILF, and VOF, in combination with gray
atter microstructure predicts the map of reading-related responses in

ateral VTC as well as the location of the visual word form area. The cur-
ent study deepens our understanding of the neural substrates of reading
nd opens a new avenue of research that carefully assesses the role of
arious features of the gray and white matter anatomy in driving the
rganization of the VTC and the brain. 

uthor contribution 

MG collected the data and developed code used for data analyses.
G, KGS and JDY analyzed the data. MG, KGS and JDY wrote the
anuscript. 

eclaration of Competing Interests 

The authors declare no competing interests. 

cknowledgments 

This research was supported by the National Institute of Health (NIH;
rant 1R01EY023915 awarded to KGS as well as grants RF1MH121868
nd R01HD09586101 awarded to JDY), by the Deutsche Forschungsge-
einschaft (DFG; grant GR 4850/1-1 awarded to MG) and by an Innova-

ion Grant from the Stanford Center for Cognitive and Neurobiological
maging (CNI; awarded to MG). 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi:10.1016/j.neuroimage.2020.117669 . 

eferences 

bbasi, N., Duncan, J., Rajimehr, R., 2020. Genetic influence is linked to cortical
morphology in category-selective areas of visual cortex. Nat. Commun. 11, 1–9.
doi: 10.1038/s41467-020-14610-8 . 

ehrmann, M., Plaut, D.C., 2015. A vision of graded hemispheric specialization. Ann. N.
Y. Acad. Sci. 1359, 30–46. doi: 10.1111/nyas.12833 . 

https://doi.org/10.13039/100000098
https://doi.org/10.1016/j.neuroimage.2020.117669
https://doi.org/10.1038/s41467-020-14610-8
https://doi.org/10.1111/nyas.12833


M. Grotheer, J. Yeatman and K. Grill-Spector NeuroImage 227 (2021) 117669 

B  

 

B  

B  

 

 

B  

 

B  

 

B  

C  

 

C  

 

C  

 

 

C  

 

C  

 

C  

 

 

D  

 

D  

D  

 

 

D  

 

D  

E  

E  

 

E  

G  

 

 

G  

 

G  

 

 

G  

 

 

G  

 

G  

 

G  

 

G  

 

G  

 

G  

 

H  

 

H  

H  

 

J  

 

J  

 

K  

 

K  

 

K  

K  

 

K  

 

K  

 

 

K  

 

L  

 

L  

 

 

L  

 

M  

M  

 

M  

 

 

N  

 

 

N  

 

N  

 

N  

 

N  

 

O  

 

P  

 

P  

 

 

en-Shachar, M., Dougherty, R.F., Deutsch, G.K., Wandell, B.A., 2011. The develop-
ment of cortical sensitivity to visual word forms. J. Cogn. Neurosci. 23, 2387–2399.
doi: 10.1162/jocn.2011.21615 . 

en-Shachar, M., Dougherty, R.F., Wandell, B.A., 2007. White matter pathways in reading.
Curr. Opin. Neurobiol. 17, 258–270. doi: 10.1016/j.conb.2007.03.006 . 

i, Y., Han, Z., Zhong, S., Ma, Y., Gong, G., Huang, R., Song, L., Fang, Y., He, Y.,
Caramazza, A., 2015. The white matter structural network underlying human
tool use and tool understanding. J. Neurosci. 35, 6822–6835. doi: 10.1523/JNEU-
ROSCI.3709-14.2015 . 

ouhali, F., Thiebaut de Schotten, M., Pinel, P., Poupon, C., Mangin, J.-F., Dehaene, S.,
Cohen, L., 2014. Anatomical connections of the visual word form area. J. Neurosci.
34, 15402–15414. doi: 10.1523/JNEUROSCI.4918-13.2014 . 

roce, I.J., Bernal, B., Altman, N., Bradley, C., Baez, N., Cabrera, L., Hernandez, G., De
Feria, A., Dick, A.S., 2019. Fiber pathways supporting early literacy development in
5–8-year-old children. Brain Cogn. 134, 80–89. doi: 10.1016/j.bandc.2018.12.004 . 

rodmann, K. , 1909. The principles of comparative localisation in the cerebral.. IN: Cortex
based on cytoarchitectonics. Springer, Lausanne, Switzerland . 

alamante, F., Tournier, J.D., Jackson, G.D., Connelly, A., 2010. Track-density imaging
(TDI): Super-resolution white matter imaging using whole-brain track-density map-
ping. Neuroimage 53, 1233–1243. doi: 10.1016/j.neuroimage.2010.07.024 . 

antlon, J.F., Pinel, P., Dehaene, S., Pelphrey, K.A., 2011. Cortical representations of sym-
bols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21,
191–199. doi: 10.1093/cercor/bhq078 . 

aspers, J., Zilles, K., Eickhoff, S.B., Schleicher, A., Mohlberg, H., Amunts, K., 2013.
Cytoarchitectonical analysis and probabilistic mapping of two extrastriate ar-
eas of the human posterior fusiform gyrus. Brain Struct. Funct. 218, 511–526.
doi: 10.1007/s00429-012-0411-8 . 

atani, M., Howard, R.J., Pajevic, S., Jones, D.K., 2002. Virtual in Vivo interactive
dissection of white matter fasciculi in the human brain. Neuroimage 17, 77–94.
doi: 10.1006/nimg.2002.1136 . 

ohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hé-
naff, M.-A., Michel, F., 2000. The visual word form area. Brain 123, 291–307.
doi: 10.1093/brain/123.2.291 . 

ummine, J., Dai, W., Borowsky, R., Gould, L., Rollans, C., Boliek, C., 2013. Investigating
the ventral-lexical, dorsal-sublexical model of basic reading processes using diffusion
tensor imaging. Brain Struct. Funct. 220, 445–455. doi: 10.1007/s00429-013-0666-8 .

ehaene-Lambertz, G., Monzalvo, K., Dehaene, S., 2018. The emergence of the visual word
form: Longitudinal evolution of category-specific ventral visual areas during reading
acquisition. PLoS Biol 16, e2004103. doi: 10.1371/journal.pbio.2004103 . 

ehaene, S., Cohen, L., 2011. The unique role of the visual word form area in reading.
Trends Cogn. Sci. doi: 10.1016/j.tics.2011.04.003 . 

ehaene, S., Pegado, F., Braga, L.W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-
Lambertz, G., Kolinsky, R., Morais, J., Cohen, L., 2010. How learning to read
changes the cortical networks for vision and language. Science 330 (80), 1359–1364.
doi: 10.1126/science.1194140 . 

hollander, T. , Raffelt, D. , Connelly, A. , 2016. Unsupervised 3-tissue response function
estimation from single-shell or multi-shell diffusion MR data without a co-registered
T1 image. In: ISMRM Workshop on Breaking the Barriers of Diffusion MRI, p. 5 . 

ice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology
26, 297–302. doi: 10.2307/1932409 . 

dwards, L.J., Kirilina, E., Mohammadi, S., Weiskopf, N., 2018. Microstructural imaging
of human neocortex in vivo. Neuroimage doi: 10.1016/j.neuroimage.2018.02.055 . 

pelbaum, S., Pinel, P., Gaillard, R., Delmaire, C., Perrin, M., Dupont, S., Dehaene, S.,
Cohen, L., 2008. Pure alexia as a disconnection syndrome: New diffusion imaging
evidence for an old concept. Cortex 44, 962974. doi: 10.1016/j.cortex.2008.05.003 . 

pstein, R., Kanwisher, N., 1998. A cortical representation the local visual environment.
Nature 392, 598–601. doi: 10.1038/33402 . 

aillard, R., Naccache, L., Pinel, P., Clémenceau, S., Volle, E., Hasboun, D., Dupont, S.,
Baulac, M., Dehaene, S., Adam, C., Cohen, L., 2006. Direct intracranial, fMRI, and
lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron
50, 191–204. doi: 10.1016/j.neuron.2006.03.031 . 

lezer, L.S., Riesenhuber, M., 2013. Individual variability in location impacts ortho-
graphic selectivity in the “visual word form area ”. J. Neurosci. 33, 11221–11226.
doi: 10.1523/JNEUROSCI.5002-12.2013 . 

omez, J., Barnett, M.A., Natu, V., Mezer, A., Palomero-Gallagher, N., Weiner, K.S.,
Amunts, K., Zilles, K., Grill-Spector, K., Pascalis, Olivier, de, V., 2017. Microstructural
proliferation in human cortex is coupled with the development of face processing.
Science 355 (80), 68–71. doi: 10.1126/science.aag0311 . 

omez, J., Pestilli, F., Witthoft, N., Golarai, G., Liberman, A., Poltoratski, S., Yoon, J., Grill-
Spector, K., 2015. Functionally defined white matter reveals segregated pathways in
human ventral temporal cortex associated with category-specific processing. Neuron
85, 216–228. doi: 10.1016/j.neuron.2014.12.027 . 

rill-Spector, K., Weiner, K.S., 2014. The functional architecture of the ventral tem-
poral cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548.
doi: 10.1038/nrn3747 . 

rill-Spector, K., Weiner, K.S., Kay, K., Gomez, J., 2017. The functional neuroanatomy
of human face perception. Annu. Rev. Vis. Sci. 3, 167–196. doi: 10.1146/annurev-vi-
sion-102016-061214 . 

rotheer, M., Ambrus, G.G., Kovács, G., 2016a. Causal evidence of the involvement of the
number form area in the visual detection of numbers and letters. Neuroimage 132,
314–319. doi: 10.1016/j.neuroimage.2016.02.069 . 

rotheer, M., Herrmann, K.-H., Kovács, G., 2016b. Neuroimaging evidence of a bi-
lateral representation for visually presented numbers. J. Neurosci. 36, 88–97.
doi: 10.1523/JNEUROSCI.2129-15.2016 . 

rotheer, M., Jeska, B., Grill-Spector, K., 2018. A preference for mathematical processing
11 
outweighs the selectivity for Arabic numbers in the inferior temporal gyrus. Neuroim-
age 175, 188–200. doi: 10.1016/j.neuroimage.2018.03.064 . 

rotheer, M., Zhen, Z., Lerma-Usabiaga, G., Grill-Spector, K., 2019. Separate lanes for
adding and reading in the white matter highways of the human brain. Nat. Commun.
10, 420216. doi: 10.1038/s41467-019-11424-1 . 

asson, U., Levy, I., Behrmann, M., Hendler, T., Malach, R., 2002. Eccentricity bias as
an organizing principle for human high-order object areas. Neuron 34, 479–490.
doi: 10.1016/S0896-6273(02)00662-1 . 

axby, J.V., Hoffman, E.A., Gobbini, M.I., 2000. The distributed human neural system for
face perception. Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01482-0 . 

irshorn, E.A., Li, Y., Ward, M.J., Richardson, R.M., Fiez, J.A., Ghuman, A.S., 2016. De-
coding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl.
Acad. Sci. U. S. A. 113, 8162–8167. doi: 10.1073/pnas.1604126113 . 

onas, J., Descoins, M., Koessler, L., Colnat-Coulbois, S., Sauvée, M., Guye, M., Vignal, J.P.,
Vespignani, H., Rossion, B., Maillard, L., 2012. Focal electrical intracerebral stimula-
tion of a face-sensitive area causes transient prosopagnosia. Neuroscience 222, 281–
288. doi: 10.1016/j.neuroscience.2012.07.021 . 

ulian, J.B., Ryan, J., Hamilton, R.H., Epstein, R.A., 2016. The occipital place area is
causally involved in representing environmental boundaries during navigation. Curr.
Biol. 26, 1104–1109. doi: 10.1016/j.cub.2016.02.066 . 

anwisher, N., 2010. Functional specificity in the human brain: a window into the func-
tional architecture of the mind. Proc. Natl. Acad. Sci. U. S. A. 107, 11163–11170.
doi: 10.1073/pnas.1005062107 . 

anwisher, N., McDermott, J., Chun, M.M., 1997. The fusiform face area: a module in
human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311.
doi: 10.1523/jneurosci.17-11-04302.1997 . 

ay, K.N., Yeatman, J.D., 2017. Bottom-up and top-down computations in word- and face-
selective cortex. Elife 6. doi: 10.7554/eLife.22341 . 

ellner, E., Dhital, B., Kiselev, V.G., Reisert, M., 2016. Gibbs-ringing artifact re-
moval based on local subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581.
doi: 10.1002/mrm.26054 . 

onen, C.S., Behrmann, M., Nishimura, M., Kastner, S., 2011. The func-
tional neuroanatomy of object agnosia: a case study. Neuron 71, 49–60.
doi: 10.1016/j.neuron.2011.05.030 . 

raft, I., Schreiber, J., Cafiero, R., Metere, R., Schaadt, G., Brauer, J., Neef, N.E., Müller, B.,
Kirsten, H., Wilcke, A., Boltze, J., Friederici, A.D., Skeide, M.A., 2016. Predicting
early signs of dyslexia at a preliterate age by combining behavioral assessment with
structural MRI. Neuroimage 143, 378–386. doi: 10.1016/j.neuroimage.2016.09.004 . 

ubota, E.C., Joo, S.J., Huber, E., Yeatman, J.D., 2019. Word selectivity
in high-level visual cortex and reading skill. Dev. Cogn. Neurosci. 36.
doi: 10.1016/j.dcn.2018.09.003 . 

erma-Usabiaga, G., Carreiras, M., Paz-Alonso, P.M., 2018. Converging evidence for func-
tional and structural segregation within the left ventral occipitotemporal cortex in
reading. Proc. Natl. Acad. Sci. 115, E9981–E9990. doi: 10.1073/pnas.1803003115 . 

orenz, S., Weiner, K.S., Caspers, J., Mohlberg, H., Schleicher, A., Bludau, S., Eickhoff, S.B.,
Grill-Spector, K., Zilles, K., Amunts, K., 2017. Two new cytoarchitectonic areas on the
human mid-fusiform gyrus. Cereb. Cortex 27, 373–385. doi: 10.1093/cercor/bhv225 .

utti, A., Dick, F., Sereno, M.I., Weiskopf, N., 2014. Using high-resolution quantita-
tive mapping of R1 as an index of cortical myelination. Neuroimage 93, 176–188.
doi: 10.1016/j.neuroimage.2013.06.005 . 

alach, R., Levy, I., Hasson, U., 2002. The topography of high-order human object areas.
Trends Cogn. Sci. doi: 10.1016/S1364-6613(02)01870-3 . 

cKone, E., Crookes, K., Jeffery, L., Dilks, D.D., 2012. A critical review of the develop-
ment of face recognition: Experience is less important than previously believed. Cogn.
Neuropsychol. 29, 174–212. doi: 10.1080/02643294.2012.660138 . 

ezer, A., Yeatman, J.D., Stikov, N., Kay, K.N., Cho, N.J., Dougherty, R.F., Perry, M.L.,
Parvizi, J., Hua, L.H., Butts-Pauly, K., Wandell, B.A., 2013. Quantifying the local tissue
volume and composition in individual brains with magnetic resonance imaging. Nat.
Med. 19, 1667–1672. doi: 10.1038/nm.3390 . 

atu, V.S., Gomez, J., Barnett, M., Jeska, B., Kirilina, E., Jaeger, C., Zhen, Z., Cox, S.,
Weiner, K.S., Weiskopf, N., Grill-Spector, K., 2019. Apparent thinning of human visual
cortex during childhood is associated with myelination. Proc. Natl. Acad. Sci. U. S. A.
116, 20750–20759. doi: 10.1073/pnas.1904931116 . 

estares, O., Heeger, D.J., 2000. Robust multiresolution align-
ment of MRI brain volumes. Magn. Reson. Med. 43, 705–715.
doi: 10.1002/(SICI)1522-2594(200005)43:5 < 705::AID-MRM13 > 3.0.CO;2-R . 

iogi, S.N., McCandliss, B.D., 2006. Left lateralized white matter microstructure accounts
for individual differences in reading ability and disability. Neuropsychologia 44,
2178–2188. doi: 10.1016/j.neuropsychologia.2006.01.011 . 

ordt, M., Gomez, J., Natu, V., Rezai, A., Finzi, D., Kular, H., Grill-Spector, K., 2020.
Cortical recycling in high-level visual cortex during childhood development. bioRxiv
2020.07.18.209783. doi: 10.1101/2020.07.18.209783 . 

ordt, M., Gomez, J., Natu, V., Jeska, B., Barnett, M., Grill-Spector, K., 2019. Learning to
read increases the informativeness of distributed ventral temporal responses. Cereb.
Cortex 29, 3124–3139. doi: 10.1093/cercor/bhy178 . 

sher, D.E., Saxe, R.R., Koldewyn, K., Gabrieli, J.D.E., Kanwisher, N., Saygin, Z.M., 2016.
Structural connectivity fingerprints predict cortical selectivity for multiple visual cat-
egories across cortex. Cereb. Cortex 26, 1668–1683. doi: 10.1093/cercor/bhu303 . 

apagno, C., Gallucci, M., Casarotti, A., Castellano, A., Falini, A., Fava, E., Giussani, C.,
Carrabba, G., Bello, L., Caramazza, A., 2011a. Connectivity constraints on cortical
reorganization of neural circuits involved in object naming. Neuroimage 55, 1306–
1313. doi: 10.1016/j.neuroimage.2011.01.005 . 

apagno, C., Miracapillo, C., Casarotti, A., Romero Lauro, L.J., Castellano, A., Falini, A.,
Casaceli, G., Fava, E., Bello, L., 2011b. What is the role of the uncinate
fasciculus? Surgical removal and proper name retrieval. Brain 134, 405–414.
doi: 10.1093/brain/awq283 . 

https://doi.org/10.1162/jocn.2011.21615
https://doi.org/10.1016/j.conb.2007.03.006
https://doi.org/10.1523/JNEUROSCI.3709-14.2015
https://doi.org/10.1523/JNEUROSCI.4918-13.2014
https://doi.org/10.1016/j.bandc.2018.12.004
http://refhub.elsevier.com/S1053-8119(20)31154-X/sbref0008
http://refhub.elsevier.com/S1053-8119(20)31154-X/sbref0008
https://doi.org/10.1016/j.neuroimage.2010.07.024
https://doi.org/10.1093/cercor/bhq078
https://doi.org/10.1007/s00429-012-0411-8
https://doi.org/10.1006/nimg.2002.1136
https://doi.org/10.1093/brain/123.2.291
https://doi.org/10.1007/s00429-013-0666-8
https://doi.org/10.1371/journal.pbio.2004103
https://doi.org/10.1016/j.tics.2011.04.003
https://doi.org/10.1126/science.1194140
http://refhub.elsevier.com/S1053-8119(20)31154-X/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31154-X/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31154-X/sbref0018
http://refhub.elsevier.com/S1053-8119(20)31154-X/sbref0018
https://doi.org/10.2307/1932409
https://doi.org/10.1016/j.neuroimage.2018.02.055
https://doi.org/10.1016/j.cortex.2008.05.003
https://doi.org/10.1038/33402
https://doi.org/10.1016/j.neuron.2006.03.031
https://doi.org/10.1523/JNEUROSCI.5002-12.2013
https://doi.org/10.1126/science.aag0311
https://doi.org/10.1016/j.neuron.2014.12.027
https://doi.org/10.1038/nrn3747
https://doi.org/10.1146/annurev-vision-102016-061214
https://doi.org/10.1016/j.neuroimage.2016.02.069
https://doi.org/10.1523/JNEUROSCI.2129-15.2016
https://doi.org/10.1016/j.neuroimage.2018.03.064
https://doi.org/10.1038/s41467-019-11424-1
https://doi.org/10.1016/S0896-6273(02)00662-1
https://doi.org/10.1016/S1364-6613(00)01482-0
https://doi.org/10.1073/pnas.1604126113
https://doi.org/10.1016/j.neuroscience.2012.07.021
https://doi.org/10.1016/j.cub.2016.02.066
https://doi.org/10.1073/pnas.1005062107
https://doi.org/10.1523/jneurosci.17-11-04302.1997
https://doi.org/10.7554/eLife.22341
https://doi.org/10.1002/mrm.26054
https://doi.org/10.1016/j.neuron.2011.05.030
https://doi.org/10.1016/j.neuroimage.2016.09.004
https://doi.org/10.1016/j.dcn.2018.09.003
https://doi.org/10.1073/pnas.1803003115
https://doi.org/10.1093/cercor/bhv225
https://doi.org/10.1016/j.neuroimage.2013.06.005
https://doi.org/10.1016/S1364-6613(02)01870-3
https://doi.org/10.1080/02643294.2012.660138
https://doi.org/10.1038/nm.3390
https://doi.org/10.1073/pnas.1904931116
https://doi.org/10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R
https://doi.org/10.1016/j.neuropsychologia.2006.01.011
https://doi.org/10.1101/2020.07.18.209783
https://doi.org/10.1093/cercor/bhy178
https://doi.org/10.1093/cercor/bhu303
https://doi.org/10.1016/j.neuroimage.2011.01.005
https://doi.org/10.1093/brain/awq283


M. Grotheer, J. Yeatman and K. Grill-Spector NeuroImage 227 (2021) 117669 

P  

 

 

P  

P  

 

P  

 

 

 

R  

 

 

R  

 

 

S  

 

S  

 

 

S  

 

 

S  

 

S  

 

 

 

S  

 

 

S  

 

S  

 

S  

 

S  

 

 

T  

 

T  

T  

 

 

T  

T  

 

 

T  

 

V  

 

V  

 

V  

V  

 

V  

 

W

W  

 

 

W  

 

 

W  

 

 

W  

 

 

W  

 

W  

W  

 

W  

 

 

W  

 

Y  

 

Y  

 

Y  

 

Y  

 

 

Y  

 

Y  

Y  

 

Z  

 

 

arvizi, J., Jacques, C., Foster, B.L., Withoft, N., Rangarajan, V., Weiner, K.S., Grill-
Spector, K., 2012. Electrical stimulation of human fusiform face-selective re-
gions distorts face perception. J. Neurosci. 32, 14915–14920. doi: 10.1523/JNEU-
ROSCI.2609-12.2012 . 

eelen, M.V., Downing, P.E., 2005. Selectivity for the human body in the fusiform gyrus.
J. Neurophysiol. 93, 603–608. doi: 10.1152/jn.00513.2004 . 

olk, T.A., Park, J., Smith, M.R., Park, D.C., 2007. Nature versus nurture in ventral vi-
sual cortex: A functional magnetic resonance imaging study of twins. J. Neurosci. 27,
13921–13925. doi: 10.1523/JNEUROSCI.4001-07.2007 . 

owell, H.W.R., Parker, G.J.M., Alexander, D.C., Symms, M.R., Boulby, P.A.,
Wheeler-Kingshott, C.A.M., Barker, G.J., Noppeney, U., Koepp, M.J., Dun-
can, J.S., 2006. Hemispheric asymmetries in language-related pathways: a
combined functional MRI and tractography study. Neuroimage 32, 388–399.
doi: 10.1016/j.neuroimage.2006.03.011 . 

angarajan, V., Hermes, D., Foster, B.L., Weiner, K.S., Jacques, X.C., Grill-Spector, K.,
Parvizi, J., 2014. Electrical stimulation of the left and right human fusiform gyrus
causes different effects in conscious face perception. J. Neurosci. 34, 12828–12836.
doi: 10.1523/JNEUROSCI.0527-14.2014 . 

ossion, B., Caldara, R., Seghier, M., Schuller, A.M., Lazeyras, F., Mayer, E., 2003.
A network of occipito-temporal face-sensitive areas besides the right middle
fusiform gyrus is necessary for normal face processing. Brain 126, 2381–2395.
doi: 10.1093/brain/awg241 . 

aygin, Z.M., Osher, D.E., Koldewyn, K., Reynolds, G., Gabrieli, J.D.E., Saxe, R.R., 2012.
Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat.
Neurosci. 15, 321–327. doi: 10.1038/nn.3001 . 

aygin, Z.M., Osher, D.E., Norton, E.S., Youssoufian, D.A., Beach, S.D., Feather, J.,
Gaab, N., Gabrieli, J.D.E., Kanwisher, N., 2016. Connectivity precedes function in
the development of the visual word form area. Nat. Neurosci. 19, 1250–1255.
doi: 10.1038/nn.4354 . 

chiltz, C., Sorger, B., Caldara, R., Ahmed, F., Mayer, E., Goebel, R., Rossion, B., 2006.
Impaired face discrimination in acquired prosopagnosia is associated with abnormal
response to individual faces in the right middle fusiform gyrus. Cereb. Cortex 16,
574–586. doi: 10.1093/cercor/bhj005 . 

hum, J., Hermes, D., Foster, B.L., Dastjerdi, M., Rangarajan, V., Winawer, J., Miller, K.J.,
Parvizi, J., 2013. A brain area for visual numerals. J. Neurosci. 33, 6709–6715.
doi: 10.1523/JNEUROSCI.4558-12.2013 . 

mith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-
Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saun-
ders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004.
Advances in functional and structural MR image analysis and implementation as FSL.
Neuroimage 23 (Suppl 1), S208–S219. doi: 10.1016/j.neuroimage.2004.07.051 . 

mith, R.E., Tournier, J.D., Calamante, F., Connelly, A., 2012. Anatomically-
constrained tractography: Improved diffusion MRI streamlines tractography
through effective use of anatomical information. Neuroimage 62, 1924–1938.
doi: 10.1016/j.neuroimage.2012.06.005 . 

owell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L., Toga, A.W.,
2003. Mapping cortical change across the human life span. Nat. Neurosci. 6, 309–315.
doi: 10.1038/nn1008 . 

owell, E.R., Thompson, P.M., Leonard, C.M., Welcome, S.E., Kan, E., Toga, A.W., 2004.
Longitudinal mapping of cortical thickness and brain growth in normal children. J.
Neurosci. 24, 8223–8231. doi: 10.1523/JNEUROSCI.1798-04.2004 . 

tigliani, A., Weiner, K.S., Grill-Spector, K., 2015. Temporal processing capacity
in high-level visual cortex is domain specific. J. Neurosci. 35, 12412–12424.
doi: 10.1523/JNEUROSCI.4822-14.2015 . 

u, M., Zhao, J., de Schotten, M.T., Zhou, W., Gong, G., Ramus, F., Shu, H., 2018.
Alterations in white matter pathways underlying phonological and morphological
processing in Chinese developmental dyslexia. Dev. Cogn. Neurosci. 31, 11–19.
doi: 10.1016/j.dcn.2018.04.002 . 

akemura, H., Rokem, A., Winawer, J., Yeatman, J.D., Wandell, B.A., Pestilli, F., 2016. A
major human white matter pathway between dorsal and ventral visual cortex. Cereb.
Cortex 26, 2205–2214. doi: 10.1093/cercor/bhv064 . 

aylor, J.S.H., Davis, M.H., Rastle, K., 2019. Mapping visual symbols onto spoken lan-
guage along the ventral visual stream. Proc. Natl. Acad. Sci. U. S. A. 116, 17723–
17728. doi: 10.1073/pnas.1818575116 . 

ournier, J.D., Smith, R.E., Raffelt, D.A., Tabbara, R., Dhollander, T., Pietsch, M., Christi-
aens, D., Jeurissen, B., Yeh, C.-H., Connelly, A., 2019. MRtrix3: A Fast, Flexible and
Open Software Framework for Medical Image Processing and Visualisation. Neuroim-
age 202, 116137. doi: 10.1016/j.neuroimage.2019.116137 . 

ournier, J.D., Calamante, F., Connelly, A., 2012. MRtrix: diffusion tractography in cross-
ing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66. doi: 10.1002/ima.22005 . 

ournier, J.D., Calamante, F., Connelly, A., 2007. Robust determination of
the fibre orientation distribution in diffusion MRI: Non-negativity con-
strained super-resolved spherical deconvolution. Neuroimage 35, 1459–1472.
doi: 10.1016/j.neuroimage.2007.02.016 . 
12 
ustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.,
2010. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320.
doi: 10.1109/TMI.2010.2046908 . 

anderauwera, J., Wouters, J., Vandermosten, M., Ghesquière, P., 2017. Early dynamics
of white matter deficits in children developing dyslexia. Dev. Cogn. Neurosci. 27,
69–77. doi: 10.1016/j.dcn.2017.08.003 . 

andermosten, M., Boets, B., Poelmans, H., Sunaert, S., Wouters, J., Ghesquière, P., 2012.
A tractography study in dyslexia: Neuroanatomic correlates of orthographic, phono-
logical and speech processing. Brain 135, 935–948. doi: 10.1093/brain/awr363 . 

eraart, J., Fieremans, E., Novikov, D.S., 2016a. Diffusion MRI noise mapping using ran-
dom matrix theory. Magn. Reson. Med. 76, 1582–1593. doi: 10.1002/mrm.26059 . 

eraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E., 2016b.
Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406.
doi: 10.1016/j.neuroimage.2016.08.016 . 

inckier, F., Dehaene, S., Jobert, A., Dubus, J.P., Sigman, M., Cohen, L., 2007. Hierarchical
coding of letter strings in the ventral stream: dissecting the inner organization of the
visual word-form system. Neuron 55, 143–156. doi: 10.1016/j.neuron.2007.05.031 . 

andell, B.A., Le, R.K., 2017. Diagnosing the neural circuitry of reading. Neuron 96, 298–
311. doi: 10.1016/j.neuron.2017.08.007 . 

ang, Y., Mauer, M.V., Raney, T., Peysakhovich, B., Becker, B.L.C., Sliva, D.D., Gaab, N.,
2017. Development of tract-specific white matter pathways during early reading de-
velopment in at-risk children and typical controls. Cereb. Cortex 27, 2469–2485.
doi: 10.1093/cercor/bhw095 . 

einer, K.S., Barnett, M.A., Lorenz, S., Caspers, J., Stigliani, A., Amunts, K., Zilles, K.,
Fischl, B., Grill-Spector, K., 2017. The cytoarchitecture of domain-specific regions
in human high-level visual cortex. Cereb. Cortex 27, 146–161. doi: 10.1093/cer-
cor/bhw361 . 

einer, K.S., Barnett, M.A., Witthoft, N., Golarai, G., Stigliani, A., Kay, K.N., Gomez, J.,
Natu, V.S., Amunts, K., Zilles, K., Grill-Spector, K., 2018. Defining the most probable
location of the parahippocampal place area using cortex-based alignment and cross-
validation. Neuroimage 170, 373–384. doi: 10.1016/j.neuroimage.2017.04.040 . 

einer, K.S., Golarai, G., Caspers, J., Chuapoco, M.R., Mohlberg, H., Zilles, K., Amunts, K.,
Grill-Spector, K., 2014. The mid-fusiform sulcus: a landmark identifying both cytoar-
chitectonic and functional divisions of human ventral temporal cortex. Neuroimage
84, 453–465. doi: 10.1016/j.neuroimage.2013.08.068 . 

einer, K.S., Grill-Spector, K., 2010. Sparsely-distributed organization of face and
limb activations in human ventral temporal cortex. Neuroimage 52, 1559–1573.
doi: 10.1016/j.neuroimage.2010.04.262 . 

einer, K.S., Yeatman, J.D., Wandell, B.A., 2016. The posterior arcuate fasciculus and the
vertical occipital fasciculus. Cortex doi: 10.1016/j.cortex.2016.03.012 . 

eiskopf, N., Mohammadi, S., Lutti, A., Callaghan, M.F., 2015. Advances in MRI-based
computational neuroanatomy: from morphometry to in-vivo histology. Curr. Opin.
Neurol. 28, 313–322. doi: 10.1097/WCO.0000000000000222 . 

eiskopf, N., Suckling, J., Williams, G., Correia, M., M.M., Inkster, B., Tait, R.,
Ooi, C., Bullmore T., E.T., Lutti, A., 2013. Quantitative multi-parameter map-
ping of R1, PD ∗ , MT, and R2 ∗ at 3T: a multi-center validation. Front. Neurosci.
doi: 10.3389/fnins.2013.00095 . 

hite, A.L., Palmer, J., Boynton, G.M., Yeatman, J.D., 2019. Parallel spatial channels
converge at a bottleneck in anterior word-selective cortex. Proc. Natl. Acad. Sci. U. S.
A. 116, 10087–10096. doi: 10.1073/pnas.1822137116 . 

ablonski, M., Rastle, K., Taylor, J.S.H., Ben-Shachar, M., 2019. Structural properties of
the ventral reading pathways are associated with morphological processing in adult
English readers. Cortex 116, 268–285. doi: 10.1016/j.cortex.2018.06.011 . 

eatman, J.D., Dougherty, R.F., Ben-Shachar, M., Wandell, B.A., 2012a. Development of
white matter and reading skills. Proc. Natl. Acad. Sci. U. S. A. 109, E3045–E3053.
doi: 10.1073/pnas.1206792109 . 

eatman, J.D., Dougherty, R.F., Myall, N.J., Wandell, B.A., Feldman, H.M., 2012b. Tract
profiles of white matter properties: automating fiber-tract quantification. PLoS One
7. doi: 10.1371/journal.pone.0049790 . 

eatman, J.D., Dougherty, R.F., Rykhlevskaia, E., Sherbondy, A.J., Deutsch, G.K., Wan-
dell, B.A., Ben-Shachar, M., 2011. Anatomical properties of the arcuate fasciculus pre-
dict phonological and reading skills in children. J. Cogn. Neurosci. 23, 3304–3317.
doi: 10.1162/jocn_a_00061 . 

eatman, J.D., Rauschecker, A.M., Wandell, B.A., 2013. Anatomy of the visual word form
area: adjacent cortical circuits and long-range white matter connections. Brain Lang
125, 146–155. doi: 10.1016/j.bandl.2012.04.010 . 

eatman, J.D., Wandell, B.A., Mezer, A.A., 2014a. Lifespan maturation and degeneration
of human brain white matter. Nat. Commun. 5, 4932. doi: 10.1038/ncomms5932 . 

eatman, J.D., Weiner, K.S., Pestilli, F., Rokem, A., Mezer, A., Wandell, B.A., 2014b. The
vertical occipital fasciculus: a century of controversy resolved by in vivo measure-
ments. Proc. Natl. Acad. Sci. 111, E5214–E5223. doi: 10.1073/pnas.1418503111 . 

hao, J., Thiebaut de Schotten, M., Altarelli, I., Dubois, J., Ramus, F., 2016. Al-
tered hemispheric lateralization of white matter pathways in developmental
dyslexia: evidence from spherical deconvolution tractography. Cortex 76, 51–62.
doi: 10.1016/j.cortex.2015.12.004 . 

https://doi.org/10.1523/JNEUROSCI.2609-12.2012
https://doi.org/10.1152/jn.00513.2004
https://doi.org/10.1523/JNEUROSCI.4001-07.2007
https://doi.org/10.1016/j.neuroimage.2006.03.011
https://doi.org/10.1523/JNEUROSCI.0527-14.2014
https://doi.org/10.1093/brain/awg241
https://doi.org/10.1038/nn.3001
https://doi.org/10.1038/nn.4354
https://doi.org/10.1093/cercor/bhj005
https://doi.org/10.1523/JNEUROSCI.4558-12.2013
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2012.06.005
https://doi.org/10.1038/nn1008
https://doi.org/10.1523/JNEUROSCI.1798-04.2004
https://doi.org/10.1523/JNEUROSCI.4822-14.2015
https://doi.org/10.1016/j.dcn.2018.04.002
https://doi.org/10.1093/cercor/bhv064
https://doi.org/10.1073/pnas.1818575116
https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/10.1002/ima.22005
https://doi.org/10.1016/j.neuroimage.2007.02.016
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1016/j.dcn.2017.08.003
https://doi.org/10.1093/brain/awr363
https://doi.org/10.1002/mrm.26059
https://doi.org/10.1016/j.neuroimage.2016.08.016
https://doi.org/10.1016/j.neuron.2007.05.031
https://doi.org/10.1016/j.neuron.2017.08.007
https://doi.org/10.1093/cercor/bhw095
https://doi.org/10.1093/cercor/bhw361
https://doi.org/10.1016/j.neuroimage.2017.04.040
https://doi.org/10.1016/j.neuroimage.2013.08.068
https://doi.org/10.1016/j.neuroimage.2010.04.262
https://doi.org/10.1016/j.cortex.2016.03.012
https://doi.org/10.1097/WCO.0000000000000222
https://doi.org/10.3389/fnins.2013.00095
https://doi.org/10.1073/pnas.1822137116
https://doi.org/10.1016/j.cortex.2018.06.011
https://doi.org/10.1073/pnas.1206792109
https://doi.org/10.1371/journal.pone.0049790
https://doi.org/10.1162/jocn_a_00061
https://doi.org/10.1016/j.bandl.2012.04.010
https://doi.org/10.1038/ncomms5932
https://doi.org/10.1073/pnas.1418503111
https://doi.org/10.1016/j.cortex.2015.12.004

	White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Stimuli and design
	2.3 Functional MRI data acquisition and preprocessing
	2.4 Functional regions of interest and functional activation maps
	2.5 Diffusion MRI data acquisition and processing
	2.6 Quantitative MRI data acquisition and preprocessing
	2.7 Linear model: feature selection
	2.8 Linear model: model validation
	2.9 Linear discrimination analysis
	2.10 Data and code availability

	3 Results
	3.1 Endpoints of the ILF, AF, and VOF predict reading-related responses
	3.2 Cortical tissue microstructure improves prediction of reading-related responses
	3.3 Model based on fascicle endpoints and cortical T1 predicts both the peaks and the troughs of reading-related responses
	3.4 Fascicle endpoints and cortical T1 predict the location of the visual word form area

	4 Discussion
	Author contribution
	Declaration of Competing Interests
	Acknowledgments
	Supplementary materials
	References


