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Summary

For high-dimensional supervised learning, it is often beneficial to use domain-specific knowl-
edge to improve the performance of statistical learning models. When the problem contains
covariates which form groups, researchers can include this grouping information to find par-
simonious representations of the relationship between covariates and targets. These groups
may arise artificially, as from the polynomial expansion of a smaller feature space, or naturally,
as from the anatomical grouping of different brain regions or the geographical grouping of
different cities. When the number of features is large compared to the number of observations,
one seeks a subset of the features which is sparse at both the group and global level.
The sparse group lasso (Simon et al., 2013) is a penalized regression technique designed
for exactly these situations. It combines the original lasso (Tibshirani, 1996), which induces
global sparsity, with the group lasso (Yuan & Lin, 2006), which induces group-level sparsity.
It estimates a target variable ŷ from a feature matrix X, using

ŷ = Xβ̂,

as depicted in Figure 1, with color encoding the group structure of the covariates in X. The
coefficients in β̂ characterize the relationship between the features and the target and must
satisfy (Simon et al., 2013)

β̂ = min
β
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where G is the total number of groups, X(ℓ) is the submatrix of X with columns belonging
to group ℓ, β(ℓ) is the coefficient vector of group ℓ, and pℓ is the length of β(ℓ). The model
hyperparameter λ controls the combination of the group-lasso and the lasso, with λ = 0 giving
the group lasso fit and λ = 1 yielding the lasso fit. The hyperparameter α controls the overall
strength of the regularization.
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Figure 1: A linear model, y = X · β, with grouped covariates. The feature matrix X is color-coded
to reveal a group structure. The coefficients in β follow the same grouping.

Statement of need

Groupyr is a Python library that implements the sparse group lasso as scikit-learn (Buitinck et
al., 2013; Pedregosa et al., 2011) compatible estimators. It satisfies the need for grouped pe-
nalized regression models that can be used interoperably in researcher’s real-world scikit-learn
workflows. Some pre-existing Python libraries come close to satisfying this need. Lightning
(Blondel & Pedregosa, 2016) is a Python library for large-scale linear classification and regres-
sion. It supports many solvers with a combination of the L1 and L2 penalties. However, it
does not allow the user to specify groups of covariates (see, for example, this GitHub issue).
Another Python package, group_lasso (Moe, 2020), is a well-designed and well-documented
implementation of the sparse group lasso. It meets the basic API requirements of scikit-learn
compatible estimators. However, we found that our implementation in groupyr, which relies
on the copt optimization library (Fabian Pedregosa, 2020), was between two and ten times
faster for the problem sizes that we encounter in our research (see the repository’s exam-
ples directory for a performance comparison). Additionally, we needed estimators with built-in
cross-validation support using both grid search and sequential model based optimization strate-
gies. For example, the speed and cross-validation enhancements were crucial to using groupyr
in AFQ-Insight, a neuroinformatics research library (Richie-Halford et al., 2019).

Usage

Groupyr is available on the Python Package Index (PyPI) and can be installed with

pip install groupyr

Groupyr is compatible with the scikit-learn API and its estimators offer the same instantiate,
fit, predict workflow that will be familiar to scikit-learn users. See the online documentation
for a detailed description of the API and examples in both classification and regression settings.
Here, we describe only the key differences necessary for scikit-learn users to get started with
groupyr.
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For syntactic parallelism with the scikit-learn ElasticNet estimator, we use the keyword
l1_ratio to refer to SGL’s λ hyperparameter. In addition to keyword parameters shared
with scikit-learn’s ElasticNet, ElasticNetCV, LogisticRegression, and LogisticRe
gressionCV estimators, users must specify the group assignments for the columns of the
feature matrix X. This is done during estimator instantiation using the groups parameter,
which accepts a list of numpy arrays, where the i-th array specifies the feature indices of the
i-th group. If no grouping information is provided, the default behavior assigns all features to
one group.
Groupyr also offers cross-validation estimators that automatically select the best values of
the hyperparameters α and λ using either an exhaustive grid search (with tuning_strateg
y="grid") or sequential model based optimization (SMBO) using the scikit-optimize library
(with tuning_strategy="bayes"). For the grid search strategy, our implementation is more
efficient than using the base estimator with scikit-learn’s GridSearchCV because it makes
use of warm-starting, where the model is fit along a pre-defined regularization path and the
solution from the previous fit is used as the initial guess for the current hyperparameter value.
The randomness associated with SMBO complicates the use of a warm start strategy; it can be
difficult to determine which of the previously attempted hyperparameter combinations should
provide the initial guess for the current evaluation. However, even without warm-starting, we
find that the SMBO strategy usually outperforms grid search because far fewer evaluations
are needed to arrive at the optimal hyperparameters. We provide examples of both strategies
(grid search for a classification example and SMBO for a regression example) in the online
documentation.
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