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Abstract

The white matter contains long-range connections between different brain regions and the

organization of these connections holds important implications for brain function in health

and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) to

quantify tissue properties along the trajectories of these connections. Statistical inference

from tractometry usually either averages these quantities along the length of each fiber

bundle or computes regression models separately for each point along every one of the bun-

dles. These approaches are limited in their sensitivity, in the former case, or in their statisti-

cal power, in the latter. We developed a method based on the sparse group lasso (SGL) that

takes into account tissue properties along all of the bundles and selects informative features

by enforcing both global and bundle-level sparsity. We demonstrate the performance of the

method in two settings: i) in a classification setting, patients with amyotrophic lateral sclero-

sis (ALS) are accurately distinguished from matched controls. Furthermore, SGL identifies

the corticospinal tract as important for this classification, correctly finding the parts of the

white matter known to be affected by the disease. ii) In a regression setting, SGL accurately

predicts “brain age.” In this case, the weights are distributed throughout the white matter

indicating that many different regions of the white matter change over the lifespan. Thus,

SGL leverages the multivariate relationships between diffusion properties in multiple bun-

dles to make accurate phenotypic predictions while simultaneously discovering the most rel-

evant features of the white matter.

Author summary

The connections between different parts of the brain form networks that are important

for information transmission and for brain health. These connections are composed of

nerve fibers that travel through the white matter portion of the brain. Thus, mapping tis-

sue properties in white matter pathways can help us understand which connections and
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what tissue properties are relevant to brain diseases, or explain differences in behavior and

cognition between different individuals. We developed a new statistical method that helps

map the white matter by automatically identifying the features of the white matter that

correspond to individual differences. Our approach relies on incorporating our knowl-

edge of the anatomical sub-divisions of the white matter into the statistical model itself.

We demonstrate that the model accurately captures differences between individual’s with

amyotrophic lateral sclerosis (ALS) and healthy controls. It also accurately captures brain

changes that correspond with the ages of different individuals. We tested our method on

four different datasets and found that it is more accurate than previous methods used

with these datasets, while also allowing us to highlight which white matter tissue proper-

ties and which connections account for individual differences, thus providing interpret-

able results.

This is a PLOS Computational BiologyMethods paper.

Introduction

Non-invasive methods for measuring human brain structure and function have revolutionized

our understanding of brain function. These measurements have demonstrated that interac-

tions between networks of brain regions give rise to coordinated information processing and

to the complex adaptive behavior that characterizes human cognition. Diffusion-weighted

Magnetic Resonance Imaging (dMRI) provides a unique view into the physical properties of

the connections that comprise these networks, by sensitizing the measurement to the direc-

tional diffusion of water in each voxel [1, 2]. Methods for computational tract-tracing from dif-

fusion MRI, or tractography, combine the estimates of fiber orientations in each voxel to form

streamlines that traverse the volume of the white matter [3, 4]. A variety of methods can be

used to delineate the trajectory of major neural pathways among these streamlines [5]. Tracto-
metry uses the results of tractography and models of tissue biophysics based on the patterns of

diffusion in each measurement voxel to assess the physical properties of the white matter along

specific pathways [6, 7]. In some previous tractometry-based studies, tissue properties along

the length of each tract were summarized by taking the mean along each bundle, but there is a

large body of evidence showing that there is systematic variability in the values of diffusion

metrics along the trajectory of each bundle. This justifies retaining the individual samples

along the length of each bundle [5, 6, 8, 9], hereafter referred to as tract profiling. While this

retains important information about each individual’s white matter, it also presents statistical

challenges due to the dimensionality of the data. In past work, comparisons between groups or

across individuals were done independently at each node of each bundle, for each diffusion

metric. This approach is exhaustive, but statistical power is compromised by a multiple com-

parison problem [8, 10–12]. An alternative that circumvents the multiple comparison problem

is to select just a few tracts to compare in each individual, or even segments of these tracts

based on a priori hypotheses. This approach is appropriate when the biological basis of the pro-

cess of interest is relatively well understood (for a recent example, see [13]). Sometimes, these

approaches are combined: a bundle is selected based on a priori knowledge, and all the data in

the bundle of interest are used together to fit a model that can predict differences between indi-

viduals [14].
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The present work aims to balance predictive accuracy with descriptive power [15, 16] by

capitalizing on all of the available data across all bundles, while also retaining and elucidating

spatial information about the locations that are most informative for discriminative perfor-

mance. Unlike many previous analyses of white matter (e.g., using TBSS [17] and connecto-

metry [18]), which focus on classical inference about the differences between groups or

individuals in terms of their white matter properties, the focus of the present work is on the

combination of features that facilitate accurate prediction of the individual differences in a

particular phenotype. For example, an accurate prediction of which individuals in a group

have a particular disease, or a prediction of their age with small error. The distinct goals of

inference and prediction are not necessarily incongruent, but can sometimes be in tension

[19]. This distinction is also similar to the distinction between “encoding” and “decoding”

used in the functional MRI literature [20]. In the present work, we predict the phenotypical

variance in a group of subjects, or classify group membership, based on a linear combination

of the features estimated with tract profiling.

Using this approach, we first need to deal with the large and asymmetric dimensionality of

the data: tract profile data usually has many more features (i.e., number of measurements per

individual) than samples (number of subjects), which makes inferences from the data about

phenotypical differences between individuals ill-posed. This regime is the target of several sta-

tistical learning techniques, and is often solved by various forms of regularization.

The Lasso algorithm minimizes the sum of the absolute values of contributions of each fea-

ture [21]. This tends to shrink to zero the contributions of many of the features, providing

results that are both accurate and interpretable. When additional structure is available in the

organization of the data, regularization algorithms can take advantage of this structure. For

example, if the features lend themselves to a natural division into different groups, the Group

Lasso (GL) can be used to select groups of features, rather than individual features [22]. The

Sparse Group Lasso (SGL) elaborates on this idea by providing control both of group sparsity,

as well as overall sparsity of the solutions [23]. Because the features measured with tractomery

lend themselves to grouping based on the tracts from which each measurement is taken, GL

and SGL provide useful tools for linear model fitting in problems of this form. Here we develop

an implementation of SGL that is well suited to the analysis of tract profile data. In addition,

we demonstrate the power and flexibility of this approach by applying it to both classification

and continuous prediction problems. Our data flow is represented in Fig 1 and explained in

further detail in the Methods section.

One more approach to multivariate analysis of neuroimaging data is to perform infer-

ence or prediction in a transformed feature space rather then the original diffusion metric

feature space. For example, in Lasso PCR, diffusion features can be projected onto a princi-

pal components (PC) basis for use in a sparsity constrained model [24, 25]. While these

approaches achieve high predictive performance and may even yield biologically interpret-

able principal components [12], they neglect anatomical grouping information. We view

these approaches as complementary to the SGL-based approach: PCR based approaches

seek to model brain-phenotype relationships using the most parsimonious representation

of variance in the diffusion measures. In contrast, our SGL-based approach seeks to estab-

lish whether prior knowledge of anatomical grouping improves modeling of brain-pheno-

type relationships. Motivated by this distinction, we also introduce a union of the two

approaches called PCR-SGL, in which each group of features is independently transformed

into its PC basis, thereby retaining the anatomical grouping information of the original fea-

ture space. We demonstrate circumstances in which this approach both helps and hinders

predictive performance.
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Results

We developed a method for analyzing dMRI tract profile data that uses the Sparse Group

Lasso (SGL) to select features that are sparse both at the group (bundle) level, as well as overall.

We demonstrate the use of this method on four different datasets in both a classification set-

ting and a regression setting.

SGL accurately detects ALS from tractometry data

Using data from a previous study of patients with amyotrophic lateral sclerosis (ALS) [26], we

tested the performance of SGL in a classification setting. The previous study predicted ALS sta-

tus with a mean accuracy of 80% using a random forest algorithm based on a priori selection

of features only within the CST bundle-of-interest. SGL delivers improved predictive perfor-

mance, with a cross-validated accuracy of 83% and an area under the receiver operating char-

acteristic curve (ROC AUC) of 0.88, without the need for a priori feature engineering. We also

predicted ALS diagnosis using the PCR-SGL, wherein each group of features is independently

transformed to its PC basis and an SGL model is fit to the transformed features. This model

achieves 88% accuracy and an ROC AUC of 0.9 (Fig 2a). In addition to this classification per-

formance, both SGL and PCR-SGL also identify the white matter tracts most important for

ALS classification. Fig 2b shows that PCR-SGL identified as potential disease biomarkers the

Fig 1. Tractometry data flow. (a) Whole brain tractography generates streamlines approximating the trajectories of

white matter connections. (b) Tractometry classifies these streamlines into anatomical bundles. In this case, we show

the left corticospinal tract (CSTL) and the left arcuate fasciculus (ARCL) over a mid-saggital anatomical slice. Tract

profiling further extracts bundle profiles, quantifications of various diffusion metrics along the length of the fiber

bundle. Here, we show one subject’s fractional anisotropy (FA) profile for (c) the CSTL and (d) the ARCL. (e) the

phenotypical target data and tract profile features can be organized into a linear model, ŷ ¼ Xb̂. The feature matrix X

is color-coded to reveal a natural group structure: the left (orange) group contains k features from the CSTL, the

middle (green) group contains k features from the left cingulum cingulate (CGCL), and the right (blue) group contains

k features from the ARCL. The coefficients in b̂ follow the same natural grouping. Panels (a) and (b) are adapted from

https://figshare.com/articles/figure/example_tractography-segmentation/14485350, and reproduced under the CC-BY

license (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1371/journal.pcbi.1009136.g001
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diffusion measures in the CST from the cerebral peduncle to the corona radiata, agreeing with

the previous study from which these data were extracted [26]. The relative importance of white

matter features is captured in the β coefficients from Eq (3). Fig 2c depicts these coefficients

along the right CST, plotted over the FA values for the control and ALS subject groups (see S1

and S2 Figs for tract profiles of all 18 tracts in these groups). We find that SGL and PCR-SGL

select FA metrics in the corticospinal tract and particularly in the right corticospinal tract as

most important to ALS classification, confirming previous findings [27–36] and identifying

the portions of the brain that were selected a priori in the previous study from which we

obtained the data [26].

To assess the added value of incorporating anatomical knowledge into our model, we com-

pared our classification results to those obtained from four other models: a pure lasso model,

an elastic net model, a bundle-mean lasso (i.e. a lasso model trained only on the mean metric

values from each bundle), and a principal components regression lasso (Lasso PCR) model

[24, 25]. These models achieved accuracies of 76%, 76%, 79.5%, and 71.5% respectively and

ROC AUC values of 0.76, 0.75, 0.82, and 0.71, respectively using the same cross-validation

strategy used to assess the SGL model. This difference in performance justifies the additional

complexity of the SGL over simpler sparsity-inducing regression strategies. The relatively poor

performance of Lasso PCR suggests that features with small variance are nonetheless relevant

Fig 2. PCR-SGL accurately and interpretably predicts ALS diagnosis. (a) Classification probabilities for ALS

diagnosis, with controls on the left, patients on the right, predicted controls in blue, and predicted patients in orange.

That is, orange dots on the left represent false positives, while blue dots on the right represent false negatives. We

achieve 83% accuracy with an ROC AUC of 0.88. (b) PCR-SGL coefficients are presented on the core fibers of major

fiber bundles. They exhibit high group sparsity and are concentrated in the FA of the corticospinal tract (CST). The

brain is oriented with the right hemisphere in the foreground and anterior to the right of the page. The CSTL, CSTR,

callosum forceps anterior (CFA), left arcuate (ARCL), and right arcuate (ARCR) bundles are indicated for orientation.

(c) PCR-SGL identifies three portions of the CST as important, where b̂ (dashed line, right axis) has large values. These

are centered around nodes 30, 65, and 90, corresponding to locations of substantial differences in FA between the ALS

and control groups (shaded areas indicates standard error of the mean). (d) Bundle profiles for false positive

classifications. Line colors correspond to the marker edge color in the top left plot. These individuals have reduced FA

in the CST portions which SGL identified as important. Their misclassification is coherent with the feature importance

and the group differences in FA. (e) Individual bundle profiles for false negative classifications. These individuals have

bundle profiles which oscillate between the group means.

https://doi.org/10.1371/journal.pcbi.1009136.g002
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for predicting ALS diagnosis. Or equivalently, that group differences between ALS diagnoses

are not the dominant source of variance in the diffusion metrics.

The β coefficients exhibit high bundle level sparsity; only some bundles are important,

which can be be confirmed by observing the value of α, the regularization hyperparameter that

controls the mixture of the Group Lasso and lasso penalties, selected through nested cross-vali-

dation (see Eq (3)). If α is closer to zero, it indicates that the phenotype in question preferen-

tially correlates with only a few groups of covariates. For the ALS dataset, the SGL model has α
= 0.21 and the PCR-SGL model has α = 0.4, confirming that the white matter correlates of ALS

reside mostly in one bundle, namely the CST.

Analyzing the ways in which the model mislabels individuals also provides insight. We

found that mislabelled subjects are outliers relative to their group with respect to diffusion fea-

tures of the CST (Fig 2d and 2e). The false positive classifications have reduced FA in one or

more of the three sections of the CST where kb̂k is large in Fig 2c. The false negative subjects

have FA profiles that oscillate between the two group means. Thus, when the SGL method pre-

dicts incorrectly this is done in a comprehensible manner.

SGL accurately predicts age from tractometry data

To test the performance of SGL in a continuous regression task, we focus here on the predic-

tion of biological age in three datasets named WH, HBN, and Cam-CAN (see the Methods sec-

tion for a description of each dataset). Prediction of “brain age” is a commonly undertaken

task in neuroimaging machine learning, in part because these predictions, and deviations

therefrom, may be diagnostic of overall brain health (for a review, see Cole et al. [37]). How-

ever, as Nelson et al. [38] have observed, aging biomarkers are subject to unique challenges

and tend to be noncausative. Our interest in aging here relies on its utility as a methodological

benchmark. Biological age operates on a natural scale, with meaningful and easily understood

units, and it’s popularity as a machine learning target makes it valuable for comparisons with

other studies.

The WH [39], HBN [40], and Cam-CAN [41, 42] datasets used here contain data from 76,

1651, and 640 subjects, respectively, ranging from 6–50, 5–21, and 18–88 years of age, respec-

tively. In each case, biological age was used as the predicted variable y. SGL was fit to the tract

profile features FA and mean diffusivity (MD) in 18 major brain tracts, with diffusion metrics

extracted from diffusion tensor imaging (DTI) for the WH dataset and diffusion kurtosis

imaging (DKI) [43] for the HBN and Cam-CAN datasets see S3–S8 Figs for the full tract pro-

file information in all tracts/datasets.

To evaluate the fit of the model, we used a nested cross-validation procedure. In this proce-

dure, batches of subjects are held out. For each batch (or fold), the model is fully fit without

this data. Then, once the parameters are fixed, the model is applied to predict the ages of held

out subjects based on the linear coeffiecients. This scheme automatically finds the right level of

sparsity and fits the coefficients to the ill-posed linear model, while guarding against overfit-

ting. SGL accurately predicts the age of the subjects in this procedure, with a median absolute

error of 2.67, 1.45, and 6.02 years for the WH, HBN, and Cam-CAN datasets, respectively and

coefficients of determination R2 = 0.52, 0.57, and 0.77, respectively (see Fig 3, top panels). The

predictions for Cam-CAN are competitive with a recent state of the art prediction [44], which

used streamline density to estimate the brain’s structural connectivity and achieved R2 = 0.63.

The median absolute errors are also lower than the results of a recent study that predicted age

in a large sample that included the Cam-CAN data, and was based on diffusion MRI features

[45].
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In contrast to the ALS classification case, the selected α values indicate high global sparsity

over group sparsity, with α = 0.83, 0.67, and 0.68, for the WH, HBN, and Cam-CAN datasets,

respectively. The model weights are distributed over many different tracts and dMRI tissue

properties (see Fig 3d–3f and S3–S8 Figs). This demonstrates that SGL is not coerced to pro-

duce overly sparse results when a more accurate model requires a dense selection of features.

Furthermore, inspecting the portions of bundles with larger coefficients in Fig 3g–3i reveals

that SGL selects informative regions where diffusion properties are different between the age

quintiles.

As with ALS classification, we also compared SGL performance with results obtained using

the pure lasso, elastic net, bundle-mean lasso, and Lasso PCR. The pure lasso models achieved

R2 = 0.47, 0.54, and 0.70 for the WH, HBN, and Cam-CAN datasets respectively using the

same cross-validation strategy used to assess the SGL. The elastic net models achieved R2 =

0.46, 0.59, and 0.73 for the WH, HBN, and Cam-CAN datasets, respectively. The bundle-mean

lasso models achieved R2 = 0.33, 0.22, and 0.55, respectively. And the Lasso PCR models

achieved R2 = 0.54, 0.57, 0.74, respectively. The SGL models’ performance improvement over

lasso is more modest than in the ALS classification case, which accords with the selected values

Fig 3. Predicting age with tractometry and SGL. (top) The predicted age vs. true age of each individual from the test

splits (i.e., when each subject’s data was held out in fitting the model) for the (a) WH, (b) HBN, and (c) Cam-CAN

datasets; an accurate prediction falls close to the y = x line (dashed). The mean absolute error (MAE) and coefficient of

determination R2 are presented in the lower right of each scatter plot. (middle) Feature importance for predicting age

from tract profile in the (d) WH, (e) HBN, and (f) Cam-CAN datasets. The orientation of the brain is that same as in

Fig 2b, however because the coefficients exhibit high global sparsity (as opposed to group sparsity), we plot the mean of

the absolute value of b̂ for each bundle on the core fiber. The global distrubution of the b̂ coefficients reflects the fact

that aging is not confined to a single white matter bundle. (bottom) Age quintile bundle profiles for the (g) WH, (h)

HBN, and (i) Cam-CAN datasets.

https://doi.org/10.1371/journal.pcbi.1009136.g003
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of the α hyperparameter. These SGL models were more lasso-like in their sparsity penalties so

they are more lasso-like in their predictive performance.

Model performance across all four datasets and all six model types is summarized in Fig 4.

In contrast to the ALS classification case, the PCR Lasso performs competitively in age regres-

sion, suggesting that aging is a significant source of global variance in the tract profiles. On the

other hand, the PCR-SGL models destroy cross-bundle covariance information in their initial

group-wise PC projection step (see Eq (4)), limiting performance for globally distributed phe-

nomena. Conversely, the SGL models are able to adapt to this regime.

Discussion

We present here a novel method for analysis of dMRI tract profile data that relies on the Sparse

Group Lasso [46] to make accurate predictions of phenotypic properties of individual subjects

while, simultaneously, identifying the features of the white matter that are most important for

this prediction. The method is data-driven and it is broadly applicable to a wide range of

research questions: it performs well in predicting both continuous variables, such as biological

age, as well as categorical variables, such as whether a person is a patient or a healthy control.

Fig 4. Model performance across all datasets. Each panel shows model performance measured on the test set for each

cross-validation split, with each black dot representing a split, box plots representing the quartiles, and white diamonds

representing the mean performance. The y-scale varies in each subplot. (a) Accuracy of test set predictions for the ALS

dataset. Because group differences in ALS diagnosis are mostly confined to a single bundle, the group structure-

preserving methods, SGL and PCR-SGL, outperform the other models. The remaining frames show coefficient of

determination, R2 in test sets for the (b) WH, (c) HBN, and (d) Cam-CAN datasets. Because aging affects the white

matter globally, group structure-blind methods like elastic net and PCR Lasso perform well. Nonetheless, the SGL

models show competitve predictive performance, adapting to a problem where group structure is not as informative.

PCR-SGL performs poorly in this regime because its initial group-wise PC projection destroys between bundle

covariance. The bundle-mean lasso performs poorly, demonstrating the value of along-tract profiling.

https://doi.org/10.1371/journal.pcbi.1009136.g004
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In both of these cases, SGL out-performs previous algorithms that have been developed for

these tasks [26, 44, 45]. The nested cross-validation approach used to fit the model and make

both predictions and inferences from the model guards against overfitting and tunes the

degree of sparseness required by the algorithm. This means that SGL can accurately describe

phenomena that are locally confined to a particular anatomical location or diffusion property

(e.g., FA in the CST) as well as phenomena that are widely distributed amongst brain regions

and measured diffusion properties.

Specifically, we demonstrated that the algorithm correctly detects the fact that ALS, which

is a disease of motor neurons, is localized to the cortico-spinal tract. This recapitulates the

results of previous analysis of these same data, using a bundle-of-interest approach [26]. As

with the original study, it is unclear whether our strong predictive performance is based on

image properties that would be visible in patient scans or whether it is identifying a new sub-

clinical disease biomarker. In contrast, for the analysis of biological age, the coefficients identi-

fied by the algorithm are very widely distributed across many parts of the white matter,

mirroring previous results that show a large and continuous distribution of life-span changes

in white matter properties [39]. We present age quintile bundle profiles and SGL β coefficients

for all four datasets in S3–S8 Figs. For age regression, substantial differences between the data-

sets preclude generalization across all three: (i) different acquisition parameters, which can be

challenging to harmonize [47], (ii) different diffusion models, with DTI for the WH dataset

and DKI for the HBN and Cam-CAN datasets, (iii) different age ranges and distributions

(which is evident in the figure legends for Fig 3), with HBN being a developmental dataset,

while WH and Cam-CAN are lifespan maturation datasets, and (iv) different anatomical

extents, with the WH streamlines truncated to remain with the bundle’s bounding regions of

interest (the default behavior in the legacy mAFQ) and the HBN and Cam-CAN streamlines

allowed to retain their full extent from whole-brain tractography (the default behavior in

pyAFQ). In a biological characteristic that has widespread effects in the brain, validity is diffi-

cult to assess [48], so it is both unsurprising and vexing that we can do so well at predicting

within each dataset, and yet do poorly in interpreting informative features across instruments.

We also implemented a union of the PCR Lasso and SGL approaches by first projecting each

group onto its PC basis. This PCR-SGL approach transformed the feature space into a more

parsimonious representation of its variance while also preserving group structure. But it was

unable to efficiently represent cross-bundle covariance, which is an advantage of PCR Lasso. As

a result, PCR-SGL performed well in ALS classification, where the white matter interactions are

highly localized, and poorly in age regression, where the white matter interactions are global.

One drawback of our approach is also evident in the age regression results. There are por-

tions of the bundle profiles in Fig 3g–3i for which the b̂ coefficients are zero but for which the

bundle profiles clearly contain an age differentiating signal. While SGL correctly identifies cer-

tain features as important, it is not guaranteed to identify all of the important features. It will

identify a parsimonious set of important features, dense enough to predict the phenotype and

sparse enough (at either the group or global level) to satisfy the sparsity constraints.

Another limitation of our approach is in its computational execution time, which, in our

experience, is roughly five times slower than simpler models like the lasso. This slow-down is

likely to be insignificant for “production” cycles in which researchers report their findings, but

may be prohibitive for “development” cycles in which researchers repeatedly train models

while adjusting their analysis pipeline. In practice, we circumvent this limitation by developing

our analysis infrastructure with fast, simple models, and substituting slower, more performant

models afterwards. The consistent scikit-learn-based application programming interface of

AFQ-Insight provides a good basis for this pattern.
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Taken together, our results demonstrate the promise of the group-regularized regression

approach. Even at the scale of dozens of subjects, the results provided by SGL are both accu-

rate, as well as interpretable [15]: tract profiling capitalizes on domain knowledge to engineer

meaningful features; SGL scores these features based on their relative importance; enables a

visualization of these feature importance scores in the anatomical coordinate frame of the bun-

dles (e.g., Figs 2b and 3d–3f) and provides a means to understand model errors (e.g., Fig 2d

and 2e). Thus, this multivariate analysis approach achieves high cross-validated accuracy for

precision medicine applications of dMRI data and identifies relevant features of brain anatomy

that can further our neuroscientific understanding of clinical disorders.

Neuroscience has entered an era in which consortium efforts are amassing large datasets of

high-quality dMRI measurements to address a variety of scientific questions [40, 49–52], but

the volume and complexity of these data pose substantial challenges. Tract profiling followed

by analysis with SGL provides a promising approach to distill meaningful insights from the

wealth of data measured in these efforts.

SGL has many other potential applications in neuroscience, because of the hierarchical and

grouped nature of many data types that are collected in multiple sample points within anatom-

ically-defined areas. For example, this method may be useful to understand the relationship

between fMRI recordings and behavior, where activity in each voxel may co-vary with voxels

within the same anatomical region and form features and groups of features. Similarly, large-

scale multi-electrode recordings of neural activity in awake behaving animals are becoming

increasingly feasible [53, 54] and these recordings can form features (neurons) and groups

(neurons within an anatomical region).

The results we present here also motivate extensions of the method using more sophisti-

cated cost functions. For example, the fused sparse group lasso (FSGL) [55] extends SGL to

enforce additional spatial structure: smoothness in the variation of diffusion metrics along the

bundles. As brain measurements include additional structure (for example, bilateral symme-

try), future work could also incorporate overlapping group membership for each entry in the

tract profiles [56]. For example, a measurement could come from the corpus callosum, but

also from the right hemipshere. This would also require extending the cost function used here

to incorporate these constraints. Similarly, unsupervised dimensionality reduction of tracto-

metry data (e.g., [12]) could also benefit from constraints based on grouping, as our imple-

mentation of PCR-SGL suggests.

The method is packaged as open-source software called AFQ-Insight that is openly avail-

able at https://github.com/richford/AFQ-Insight, and provides a clear API to allow for exten-

sions of the method. The sofware integrates within a broader automated fiber quantification

software ecosystem: AFQ [5] and pyAFQ [57], which extract tract profile data from raw and

processed dMRI datasets, as well as AFQ-Browser, which visualizes tract profiles data and

facilitates sharing of the results of dMRI studies [58]. To facilitate reproducibility and ease use

of the software, the results presented in this paper are also provided in https://github.com/

richford/afq-insight-paper as a series of Jupyter notebooks [59].

Materials and methods

Data

Four different datasets were used here:

1. Diffusion MRI from a previous study of the corticospinal tract (CST) in patients with amyo-

trophic lateral sclerosis (ALS [26]), containing data from 24 ALS patients and 24 demo-

graphically matched healthy controls. These data were measured in a GE Discovery 750 3T
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MRI scanner at the Institute of Bioimaging and Molecular Physiology in Catanzaro.

Informed consent was provided as approved by the Ethical Committee of the University

“Magna Graecia” of Catanzaro. Voxel resolution was 2 × 2 × 2mm3 and 27 non-colinear

directions were measured with a b = 1000 s/mm2. Data was preprocessed to correct for sub-

ject motion and for eddy currents. The diffusion tensor model [60] was fit in every voxel.

We will refer to this dataset as ALS.

2. Diffusion MRI data from a previous study of properties of the white matter across the life-

span [39], containing dMRI data from 76 subjects with ages 6–50. These data were mea-

sured in a GE Discovery 750 3T MRI scanner at the Stanford Center for Cognitive and

Neurobiological Imaging. The Stanford University IRB approved the procedures of this

study. Informed consent was obtained from each adult participant, and assent for participa-

tion was provided by parents/guardians for children. Voxel resolution was 2 × 2 × 2mm3

with 96 non-colinear directions measured with a b = 2000 s/mm2 and 30 non-colinear

directions measured with a b = 1000 s/mm2. These data were acquired using a twice refo-

cused spin echo sequence, in which there is sufficient time for eddy currents to subside

between the application of the gradients and the image acquisition, so no eddy current cor-

rection was applied, but motion correction was applied before fitting the diffusion tensor

model [60] in every voxel using a robust fit [61] on the b = 1000 s/mm2 shell only. We will

refer to this dataset as WH.

3. Diffusion MRI data from the Healthy Brain Network pediatric mental health study [40],

containing dMRI data from 1651 subjects with ages 5–21. These data were measured in 3T

Siemens MRI scanners at two sites in the New York area: Rutgers University Brain Imaging

Center and the CitiGroup Cornell Brain Imaging Center. Age distributions of participants

in the different sites are in S9 Fig. Informed consent was obtained from each participant

aged 18 or older. For participants younger than 18, written consent was obtained from their

legal guardians and written assent was obtained from the participant. Voxel resolution was

1.8 × 1.8 × 1.8mm3 with 64 non-colinear directions measured for each of b = 1000s/mm2

and b = 2000s/mm2. Preprocessing was performed using QSIPrep 0.12.1, which is based on

Nipype 1.5.1 [62, 63], RRID:SCR_002502.

• Anatomical data preprocessing The T1-weighted (T1w) image was corrected for intensity

non-uniformity (INU) using N4BiasFieldCorrection [64, ANTs 2.3.1], and used

as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped

using antsBrainExtraction.sh (ANTs 2.3.1), using OASIS as target template. Spa-

tial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c [65],

RRID:SCR_008796 was performed through nonlinear registration with antsRegis-
tration [66], ANTs 2.3.1, RRID:SCR_004757, using brain-extracted versions of both

T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using

FAST [67], FSL 6.0.3:b862cdd5, RRID:SCR_002823.

• Diffusion data preprocessing
Any images with a b-value less than 100 s/mm2 were treated as a b = 0 image. MP-PCA

denoising as implemented in MRtrix3’s dwidenoise [68] was applied with a 5-voxel

window. After MP-PCA, B1 field inhomogeneity was corrected using dwibiascorrect
from MRtrix3 with the N4 algorithm [64]. After B1 bias correction, the mean intensity of

the DWI series was adjusted so all the mean intensity of the b = 0 images matched across

eachseparate DWI scanning sequence.

FSL (version 6.0.3:b862cdd5)’s eddy was used for head motion correction and Eddy
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current correction [69]. Eddy was configured with a q-space smoothing factor of 10, a

total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first level

model and a linear second level model were used to characterize Eddy current-related

spatial distortion. q-space coordinates were forcefully assigned to shells. Field offset was

attempted to be separated from subject movement. Shells were aligned post-eddy. Eddy’s

outlier replacement was run [70]. Data were grouped by slice, only including values from

slices determined to contain at least 250 intracerebral voxels. Groups deviating by more

than 4 standard deviations from the prediction had their data replaced with imputed val-

ues. Data was collected with reversed phase-encode blips, resulting in pairs of images with

distortions going in opposite directions. Here, b = 0 reference images with reversed phase

encoding directions were used along with an equal number of b = 0 images extracted from

the DWI scans. From these pairs the susceptibility-induced off-resonance field was esti-

mated using a method similar to that described in [71]. The fieldmaps were ultimately

incorporated into the Eddy current and head motion correction interpolation. Final inter-

polation was performed using the jac method.

Several confounding time-series were calculated based on the preprocessed DWI: frame-

wise displacement (FD) using the implementation in Nipype following the definitions by

[72]. The DWI time-series were resampled to ACPC, generating a preprocessed DWI run
in ACPC space.

• MRtrix3 Reconstruction
Reconstruction was performed using QSIprep 0.12.1. Multi-tissue fiber response functions

were estimated using the dhollander algorithm. FODs were estimated via constrained

spherical deconvolution (CSD, [73, 74]) using an unsupervised multi-tissue method [75,

76]. Reconstruction was done using MRtrix3 [77]. FODs were intensity-normalized using

mtnormalize [78].

Many internal operations of QSIPrep use Nilearn 0.6.2 [79], RRID:SCR_001362 and DIPY
[80]. For more details of the pipeline, see the section corresponding to workflows in

QSIPrep’s documentation. We will refer to this dataset as HBN.

4. Diffusion MRI data from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN)

“CC700” dataset [41, 42], containing data from 640 subjects with ages 18–88. These data

were measured on a 3T Siemens TIM Trio system and written informed consent was

obtained from each participant. Voxel resolution was 2 × 2 × 2mm3 with 30 non-colinear

directions measured for each of b = 1000 s/mm2 and b = 2000 s/mm2. The diffusion

weighted images were acquired with a twice refocused spin-echo sequence and the same

preprocessing and reconstruction pipelines used for the HBN dataset was applied to this

data. We will refer to this dataset as Cam-CAN.

Data from the ALS and WH studies was processed in a similar manner, using the Matlab

Automated Fiber Quantification toolbox (mAFQ, version 1.1 for WH and version 1.2 for ALS)

[5]: streamlines representing fascicles of white matter tracts were generated using a determins-

tic tractography algorithm that follows the prinicpal diffusion direction of the diffusion tensor

in each voxel (STT) [81]. Eighteen major tracts, which are enumerated in S1 Fig, were identi-

fied using multiple criteria: streamlines are selected as candidates for inclusion in a bundle of

streamlines that represents a tract if they pass through known inclusion ROIs and do not pass

through exclusion ROIs [82]. In addition, a probabilistic atlas is used to exclude streamlines

which are unlikely to be part of a tract [83]. Each streamline is resampled to 100 nodes and the

robust mean at each location is calculated by estimating the 3D covariance of the location of

each node and excluding streamlines that are more than 5 standard deviations from the mean
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location in any node. Finally, a bundle profile of tissue properties in each bundle was created

by interpolating the value of MRI maps of these tissue properties to the location of the nodes

of the resampled streamlines designated to each bundle. In each of 100 nodes, the values are

summed across streamlines, weighting the contribution of each streamline by the inverse of

the mahalanobis distance of the node from the average of that node across streamlines. This

means that streamlines that are more representative of the tract contribute more to the bundle

profile, relative to streamlines that are on the edge of the tract.

Data from the HBN and Cam-CAN studies were processed using the updated Python Auto-

mated Fiber Quantification toolbox (pyAFQ; [57]). In addition to demonstrating the our

analysis pipeline is robust to changes in tractometry software, the use of the updated pyAFQ
capitalized upon the following improvements over the legacy Matlab version: (i) the ability

to ingest data provided in the BIDS format [84], and (ii) the calculation of diffusion kurtosis

imaging (DKI [43]) metrics We will refer to the mAFQ and pyAFQ pipeline collectively as

AFQ.

These processes create bundle profiles, in which diffusion measures are quantified and aver-

aged along eighteen major fiber tracts, which are enumerated in S1 Fig. See S3 Fig of [57] for a

depiction of these white matter bundles. Here, we use only the mean diffusivity (MD) and the

fractional anisotropy (FA) of the diffusion tensor, but additional dMRI-based maps or maps

based on other quantitative MRI measurements can also be used. The resulting feature space

was the same for all four datasets, with the FA and MD metrics at each of 100 nodes in eighteen

bundles comprising 3600 features per subject. These bundle profiles, along with the phenotypi-

cal data we wish to explain or predict, form the input to the SGL algorithm. In a domain-

agnostic machine learning context, the phenotypical data comprise the target variables while

the bundle profiles form the feature or predictor variables (see Fig 1e).

Data harmonization for HBN. For the multisite HBN study, we use the ComBat harmo-

nization method to robustly adjust for site effects in the tract profiles. Initially designed to cor-

rect for site effects in gene expression studies [85], ComBat employs a parametric empirical

Bayes approach to adjust for batch effects and has since been applied to multi-site cortical

thickness measurements [86], multi-site DTI studies [87], and functional MRI data in the

Adolescent Brain Cognitive Development Study (ABCD) [88]. We rely on the neurocom-
bat_sklearn library [89], to apply ComBat in our scikit-learn analysis pipeline and present

bundle profile site differences and ComBat correction in S10–S13 Figs.

Sparse group lasso

Before fitting a model to the data, imputation and standardization are performed. Missing

node values (e.g., in cases where AFQ designates a node as not-a-number) are imputed via lin-

ear interpolation. Care is taken not to interpolate across the boundaries between different bun-

dles. Some diffusion metrics will have naturally larger variance than others and may therefore

dominate the objective function and make the SGL estimator unable to learn from the lower

variance metrics. For example, fractional anisotropy (FA) is bounded between zero and one

and could be overwhelmed by an unscaled higher-variance metric like the mean diffusivity

(MD). To prevent this we remove each feature’s mean and scale it to unit variance (z-score)

using the StandardScaler from scikit-learn [90]. The scaling parameters are learned only

from the training data and then applied equally to the training and test data in order to prevent

leakage of information between the testing and training sets [91].

After scaling and imputation, the tract profile data and target phenotypical data can be

organized in a linear model:

y ¼ Xbþ �; ð1Þ
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where y is the phenotype—categorical, such as a clinical diagnosis, or continuous numerical,

such as the subject’s age. The tract profile data is represented in the feature matrix X, with

rows corresponding to different subjects, and columns corresponding to diffusion measures at

different nodes within each bundle. The relationship between tractometric features and the

phenotypic target is characterized by the coefficients in β. The error term, � is an unobserved

random variable that captures the error in the model. We denote our prediction of the target

phenotype as ŷ and the coefficients that produce this prediction as b̂, so that

ŷ ¼ Xb̂; ð2Þ

without the error term, �. In general, the feature matrix X has S rows and B × N ×M columns,

where S is the number of subjects, B is the number of white matter bundles, N is the number of

nodes in each bundle, andM is the number of diffusion metrics calculated at each node. Typi-

cally, B = 18, N = 100, and 2�M� 8, resulting in�4, 000 − 14, 400 features. Conversely,

many dMRI studies have between a few dozen and a few hundred subjects, yielding a feature

matrix that is wide and short. Even in cases where more than a thousand subjects are measured

(e.g., in the Human Connectome Project, where 1,200 subjects were measured [52]), the prob-

lem is ill-posed: the high dimensionality of this data requires regularization to avoid overfitting

and generate interpretable results.

We propose that in addition to regularizing the coefficients in b̂, we can also capitalize on

our knowledge of the group structure of the bundle profile features in X. The bundle-metric

combinations form a natural grouping. For example, we expect that MD features within the

left arcuate fasciculus will co-vary across individuals. Likewise for FA values within the right

corticospinal tract (CST) and so on. This group structure is represented in Fig 1e, which

depicts the linear model ŷ ¼ Xb̂. Thus, we seek a regularization approach that will fit a linear

model with anatomically-grouped covariates, where we expect to observe both groupwise spar-

sity, where the number of groups (bundle/metric combinations) with at least one non-zero

coefficients is small, as well as within-group sparsity, where the number of non-zero coeffi-

cients within each non-zero group is small. The sparse group lasso (SGL) is a penalized regres-

sion technique that satisfies these criteria [46]. It solves for a coefficient vector b̂ that satisfies

b̂ ¼ min
b
Lmse þ ð1 � aÞl

XG

‘¼1

ffiffiffiffi
p‘
p
kb
ð‘Þ
k2 þ alkbk1;

where Lmse ¼
1

2
y �

XG

‘¼1

Xð‘Þbð‘Þ
�
�
�
�
�

�
�
�
�
�

2

2

:

ð3Þ

Here, G is the number of groups, X(ℓ) is the submatrix of X corresponding to group ℓ, β(ℓ) is

the coefficient vector for group ℓ and pℓ is the length of β(ℓ). In the tractomtetry setting, G = B
×M and 8ℓ: pℓ = 100. The first term is the mean square error loss, Lmse, as in the standard lin-

ear regression framework. The second and third terms encourage groupwise sparsity and over-

all sparsity, respectively. If α = 1 the SGL reduces to the traditional lasso [92]. Conversely, if

α = 0 the SGL reduces to the group lasso [93]. Thus, the model hyperparameter α controls

the combination of group-lasso and lasso. The hyperparameter λ controls the strength of the

regularization.

SGL with principal components. SGL may be combined with principal components

regression (PCR-SGL) by performing dimensionality reduction separately for each group of

covariates. Let

Xð‘Þ ¼ USVT; ð4Þ
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be the compact singular value decomposition (SVD) of X(ℓ), the n × pℓ submatrix of X corre-

sponding to group ℓ. Here, S is an r × rmatrix, where r = min(n, pℓ), that contains the non-

zero singular values of X(ℓ). VT is an r × p semi-orthogonal matrix containing the principal

axes of X(ℓ). The product Z = US is an n × rmatrix containing the principal component row

vectors needed to reproduce X(ℓ) in the basis provided by VT.

Since this decomposition is performed separately for each group of covariates, the grouping

information is preserved in the transformation from X to Z. We may then build an SGL model

relating y and Z,

ŷ ¼ Zŷ; ð5Þ

ŷ ¼ min
y
Lmse þ ð1 � aÞl
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The PCR-SGL coefficients ŷ may be projected back onto the original feature space using

b̂ ¼ Vŷ.

Bagging meta-estimators. The previous section describes a single SGL model. To further

improve model performance, we create ensemble models composed ofm = 20 individual SGL

models using bootstrap aggregation (bagging) [94]. Bagging relies on the underlying assump-

tion that some of the error in a single SGL model’s prediction stems from a mismatch in the

distributions of training data used to fit the model and test data used to evaluate its perfor-

mance. To overcome this, bagging invokes the same base estimator (e.g. SGL) many times

with different training sets, which are created by sampling the original training samples with

replacement. The bagging meta-estimator’s prediction is then the average of its constituent

estimators’ predictions. Likewise, when we report the hyperparameter values α and λ, or

regression coefficients b̂, we are refering to these values averaged over 20 estimators in the bag-

ging meta-estimator.

Incorporating target transformations. Often, the target variable y is not in the domain

in which the linear model can be best fit to it. Eq (2) can be slightly modified as:

ŷ ¼ f � 1ðXb̂Þ; ð8Þ

where the transformation function f−1 characterizes the transform applied to the data before

fitting the linear coefficients. This is similar to the use of a link function in a generalized linear

model, but without the adoption of an exponential probability distribution [95]. For the WH,

HBN, and Cam-CAN datasets, we use a logarithmic transform,

f ðŷÞ ¼ lnðŷÞ; ð9Þ

implemented using scikit-learn’s TransformedTargetRegressor meta-estimator [90]

with numpy’s log and exp as the transform and inverse transform functions, respectively

[96].

Classification of categorical targets. When the phenotypical target variable is categorical,

as in the case of explaining or predicting the presence of a clinical diagnosis, the SGL is readily

adapted to logistic regression, where the probability of a target variable belonging to an
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arbitrary defined “true” class is the logistic function of the result of the linear model,

pðŷ ¼ 1Þ ¼
1

1þ expðXb̂Þ
; ð10Þ

or equivalently, the mean squared error loss function in Eq (3) is replaced with the cross-

entropy loss, which for binary classification is the negative log likelihood of the SGL classifier

giving the “true” label:

Lmse ! Llog ¼ � ðy logðpÞ þ ð1 � yÞ logð1 � pÞÞ: ð11Þ

SGL implementation, cross-validation and metaparameter optimization

Because the SGL is not specific to tractometry, we implemented its solution as a general-pur-

pose Python package called groupyr [97]. Groupyr solves the cost function in Eq (3) using

proximal gradient descent [98] by implementing a custom proximal operator and relying on

the C-OPT optimization library [99], providing a fitted SGL model as a scikit-learn compatible

estimator [100]. Groupyr also selects the hyperparameters α and λ that yield the best cross-

validated performance using either: (i) an exhaustive grid search of hyperparameter combina-

tions, or (ii) sequential model based optimization using the scikit-optimize library [101].

To objectively evaluate model performance and guard against over-fitting, we used a nested

cross-validation scheme, which is depicted for the binary classification case in Fig 5. The sub-

jects (i.e. rows of the feature matrix X in Fig 1e and Eq (1)) are first shuffled and then decom-

posed into k0 batches, hereafter referred to as folds. For the ALS and WH datasets, we used k0 =

10 and for the HBN and Cam-CAN datasets, k0 = 5. For each unique fold, we hold that fold out

as the test0 set and let the remaining data comprise the train0 set, with the subscript indicating

Fig 5. Nested cross-validation. We evaluate model quality using a nested k-fold cross validation scheme. At level-0,

the input data is decomposed into k0 shuffled groups and optimal hyperparameters are found for the level-0 training

set. To avoid overfitting, the optimal hyperparameters are themselves evaluated using a cross-validation scheme taking

place at level-1 of the decomposition, where each level-0 training set is further decomposed into k1 = 3 shuffled groups.

In the classification case, the training and test splits are stratified by diagnosis. For the ALS and WH data, k0 = 10,

while for the HBN and Cam-CAN data, k0 = 5.

https://doi.org/10.1371/journal.pcbi.1009136.g005
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the depth of the nested decomposition. We further decompose each train0 set into three folds,

and again for each unique fold, we hold out that fold as the test1 set and let the remaining data

comprise the train1 set. At level-1 of the decomposition, we fit an SGL model using fixed regu-

larization meta-parameters α and λ, training the model using train1 and evaluating the fit on

test1. We find the optimal values for α and λ using sequential model-based optimization, imple-

mented using the scikit-optimize BayesSearchCV class [101]. For continuous numerical y,
BayesSearchCV searches for meta-parameter values that maximize the R2 averaged over test

sets. For binary categorical y BayesSearchCV seeks to maximize the classification accuracy.

Using hyperoptimization, we find optimal regularization parameters and b̂ for each train0 set

and then use those to predict values for data in test0. Thus each subject in the dataset has a

predicted phenotype derived from a model that never saw its particular subject’s data. In the

classification case, the shuffling into folds is stratified such that each fold has a population that

preserves the percentage of each class found in the larger input data.

For each dataset, we also perform a randomization test by training similar models on copies

of the data for which the rows of the target variable y have been shuffled while the feature

matrix X remains the same. This effectively destroys any relationship between the diffusion

data and the outcome. Indeed, all of our models perform no better than random guessing. One

should expect this since any better performance might indicate data leakage between train and

test sets [91] or other common machine learning pitfalls.

Software implementation

The full software implementation of the SGL approach presented here is available in a Python

software package called AFQ-Insight, which is developed publicly in https://github.com/

richford/afq-insight. The version of the code used to produce the results herein is also available

in https://doi.org/10.5281/zenodo.4316000. AFQ-Insight reads the target and feature data that

has been processed by AFQ from comma separated value (CSV) files conforming to the AFQ-

Browser data format [58] and represents them internally as DataFrame objects from the

pandas Python library [102]. The software provides different options for imputing missing

data in the feature matrix. Missing interior nodes are imputed using linear interpolation. For

missing exterior nodes, the user may choose between linear extrapolation and constant for-

ward- or back-fill. Imputation uses only values from adjacent nodes in the same white matter

bundle in the same subject so there is no danger of data leakage from other subjects. It uses the

scikit-learn [90] library to decompose input data into separate test and train datasets, to scale

each feature to have zero mean and unit variance, and to evaluate each fit in the hyperpara-

meter search using appropriate classification and regression metrics such as accuracy, area

under the receiver operating curve (AUC ROC), and coefficient of determination (R2). Inter-

nally, AFQ-Insight uses the groupyr software library [97] mentioned above to solve the

SGL.

Supporting information

S1 Fig. Bundle profiles and regression coefficients for the ALS dataset FA. Diffusion met-

rics are plotted along the length of eighteen bundles: right corticospinal (CSTR), left corticosp-

inal (CSTL), right uncinate (UNCR), left uncinate (UNCL), left inferior fronto-occipital

fasciculus (IFOL), right inferior fronto-occipital fasciculus (IFOR), right arcuate (ARCR), left

arcuate (ARCL), right thalamic radiation (ATRR), left thalamic radiation (ATRL), right cingu-

lum cingulate (CGCR), left cingulum cingulate (CGCL), callosum forceps posterior (CFP),

callosum forceps anterior (CFA), right inferior longitudinal fasciculus (ILFR), left inferior lon-

gitudinal fasciculus (ILFL), right superior longitudinal fasciculus (SLFR), and left superior
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longitudinal fasciculus (SLFL). FA is plotted on the left y-axis while the b̂ coefficients are dis-

played on the twin axis on the right-hand-side. SGL selected the right corticospinal tract

(CSTR) as important and regularized coefficients in the CSTL. Yet, there are also group FA dif-

ferences in the CSTL. This highlighted a potential drawback of the SGL method, discussed in

the main text in the context of age regression. Namely, SGL is not guaranteed to identify all
important features. In this case, if the diagnostic signal in the CSTL is redundant to that in the

CSTR, SGL will regularize the CSTL features, thereby reducing its sparsity penalty without any

corresponding increase in loss. This parsimony cuts both ways; it is a feature of the method

when one seeks an efficient predictive model, but is a disadvantage of the method when one

wants an exhaustive explanation of feature importance. We use the phrase “parsimony pitfall”

to refer to the case when SGL regularizes away redundant but obviously important features.

(TIF)

S2 Fig. Bundle profiles and regression coefficients for the ALS dataset MD. The scale of the

b̂-axis is identical to that used in S1 Fig, to facilitate the comparison of the relative importance

of each metric.

(TIF)

S3 Fig. Bundle profiles and regression coefficients for the WH dataset FA. In contrast to

the ALS classification case, the b̂ coefficients are distributed widely through the brain, support-

ing the interpretation that aging is a large and continuous whole-brain process.

(TIF)

S4 Fig. Bundle profiles and regression coefficients for the WH dataset MD. This and S3 Fig

demonstrate that SGL behaves much more like the lasso than the group lasso, as discussed in

the main text. The parsimony pitfall is most evident in the IFOL and IFOR bundles.

(TIF)

S5 Fig. FA bundle profiles and b̂ coefficients for age regression in the HBN dataset. Like

the WH dataset, the b̂ coefficients are distributed widely through the brain and SGL behaves

more like the lasso than the group lasso.

(TIF)

S6 Fig. MD bundle profiles and b̂ coefficients for age regression in the HBN dataset. In

contrast to the WH results, the bundle profiles show different behaviors. For example the SLFL

and SLFR bundle profiles in have different concavity. This is unsurprising, however, given the

differences between these datasets (see also Discussion). The parsimony pitfall is most evident

in the UNCL, UNCR, ARCL, SLFL, and SLFR bundles.

(TIF)

S7 Fig. FA bundle profiles and b̂ coefficients for age regression in the Cam-CAN dataset.

The b̂ coefficients are distributed widely through the brain and SGL behaves more like the

lasso than the group lasso. As before, one must be cautious about comparing bundle profiles

and b̂ coefficients between models. While the HBN and Cam-CAN datasets share the same dif-

fusion model and refrain from clipping streamlines, the age distributions for the two are

roughly disjoint, with the WH age distribution straddling the two.

(TIF)

S8 Fig. Mean diffusivity (MD) bundle profiles and b̂ coefficients for age regression in the

Cam-CAN dataset.

(TIF)
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S9 Fig. Age distributions are similar between the different HBN sites. Rutgers Rutgers Uni-

versity Brain Imaging Center (RU) and the CitiGroup Cornell Brain Imaging Center (CBIC).

(TIF)

S10 Fig. FA bundle profiles exhibit strong site differences in the HBN dataset.

(TIF)

S11 Fig. MD bundle profiles exhibit strong site differences in the HBN dataset.

(TIF)

S12 Fig. Site differences in FA are eliminated by ComBat harmonization.

(TIF)

S13 Fig. Site differences in MD are eliminated by ComBat harmonization.

(TIF)
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