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A B S T R A C T

Diffusion MRI (dMRI) holds great promise for illuminating the biological changes that underpin cognitive de-
velopment. The diffusion of water molecules probes the cellular structure of brain tissue, and biophysical
modeling of the diffusion signal can be used to make inferences about specific tissue properties that vary over
development or predict cognitive performance. However, applying these models to study development requires
that the parameters can be reliably estimated given the constraints of data collection with children. Here we
collect repeated scans using a typical multi-shell diffusion MRI protocol in a group of children (ages 7–12) and
use two popular modeling techniques to examine individual differences in white matter structure. We first assess
scan-rescan reliability of model parameters and show that axon water faction can be reliably estimated from a
relatively fast acquisition, without applying spatial smoothing or de-noising. We then investigate developmental
changes in the white matter, and individual differences that correlate with reading skill. Specifically, we test the
hypothesis that previously reported correlations between reading skill and diffusion anisotropy in the corpus
callosum reflect increased axon water fraction in poor readers. Both models support this interpretation, high-
lighting the utility of these approaches for testing specific hypotheses about cognitive development.

1. Introduction

White matter biology has been studied extensively using invasive
techniques in non-human animals (reviewed in (Walhovd et al., 2014)).
Models that link biology to non-invasive MRI measurements hold pro-
mise for clarifying the maturational trajectory of human white matter
and the neurobiological underpinnings of complex cognitive skills, like
reading. However, models with increased biological specificity may be
less sensitive to individual differences than metrics derived from the
diffusion tensor model (De Santis et al., 2014). For these models to have
widespread application in developmental cognitive neuroscience, it is
important to ascertain whether the parameters derived from these
models reliably index individual differences in the white matter of
developing children.

Diffusion tensor imaging (DTI) is the most widely used dMRI tech-
nique for studying white matter development, owing partially to the
fact that the model is easy to fit and highly reliable. DTI has revealed
protracted development of the human white matter with development,
continuing throughout adolescence and into adulthood (Lebel and

Beaulieu, 2011; Mukherjee et al., 2001). However, DTI metrics lack
biological specificity. For example, developmental variation in frac-
tional anisotropy (FA) can reflect differences in axonal packing density,
caliber, myelination, or spatial coherence, as well as changes in the
number, size, and branching of glial cells (Alexander et al., 2007; Basser
and Pierpaoli, 1996; De Santis et al., 2014; Jeurissen et al., 2013; Jones
et al., 2013; Walhovd et al., 2014).

Two popular modeling approaches for estimating biologically spe-
cific properties of the white matter from dMRI data are the “White
Matter Tract Integrity” model (WMTI (Fieremans et al., 2011, 2010))
and the “Neurite Orientation Dispersion and Density Imaging” model
(NODDI (Zhang et al., 2012)). Although these models makes certain
simplifying assumptions, they have been successfully applied to the
study of development (Jelescu et al., 2015), aging (Benitez et al., 2014),
and white matter pathology (Benitez et al., 2014; Falangola et al., 2014;
Fieremans et al., 2013; Guglielmetti et al., 2016; Jelescu et al., 2016;
Kelm et al., 2016), and both provide estimates of tissue properties that
are compatible with histological measurements (reviewed in (Jelescu
and Budde, 2017)). Recently, NODDI has been used to disentangle
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developmental changes related to dispersion versus density of neurites
(axonal and/or dendritic processes) over development (Chang et al.,
2015; Genc et al., 2017; Kodiweera et al., 2016; Mah et al., 2017) and in
infancy (Kunz et al., 2014; Dean et al., 2017). With the successful ap-
plication of these models in the context of development, they are now
beginning to be applied to the study of individual differences in cog-
nition (Chung et al., 2018). To date, these models have not been applied
to the study of reading development.

The relationship between individual differences in reading and
white matter diffusion properties has been studied extensively using
DTI (Wandell and Yeatman, 2013). While this approach has identified
several anatomical correlates of skilled reading, it has often produced
conflicting and counterintuitive results. For example, correlations be-
tween FA and reading skill are consistently reported in a number of
anatomical tracts (Ben-Shachar et al., 2007; Vandermosten et al.,
2012), however the direction of the correlation – positive versus ne-
gative – varies across studies and brain regions (Ben-Shachar et al.,
2007; Deutsch et al., 2005; Klingberg et al., 2000; Lebel and Beaulieu,
2011; Niogi and McCandliss, 2006; Vandermosten et al., 2012; Yeatman
et al., 2011), suggesting that the diffusion measurements in a given
study may be influenced by different biological phenomena with dis-
tinct, and potentially opposing, relationships to reading (Yeatman et al.,
2012a). Somewhat counter intuitively, a number of studies have re-
ported higher FA in the commissural tracts of individuals with lower
reading performance. This phenomenon has been attributed to a higher
density of interhemispheric connections, i.e., more callosal axons
(Dougherty et al., 2007), although it could also, theoretically, reflect
reduced axonal dispersion (i.e., more highly skilled readers have more
complex, and less coherent, axonal architecture). However, there has
been limited opportunity to test hypotheses about the underlying bio-
logical mechanisms that drive variation in reading skill.

The goal of the present work is threefold. First, we assess the scan-
rescan reliability of biologically specific white matter indices derived
from the WMTI and NODDI models in dMRI data collected in a group of
children with varying ages (7–12 years) and varying reading levels
(including children with dyslexia and typical readers). We show that
the derived values in our sample are reliable and reflect reproducible
individual differences. Second, we explore how decisions made in
preprocessing affect model reliability. We find that image smoothing or
de-noising is unnecessary when data are analyzed within individually
defined white matter tracts using a robust measure, such as the median,
to estimate values within a region of interest. Third, we examine in-
dividual differences in white matter maturation and reading skill, and
demonstrate that these models can be used to test specific hypotheses
about the correlation between reading skill and white matter diffusion
properties. These results highlight the potential for novel modeling
approaches to enrich our understanding of the biological bases of
cognitive development in health and disease.

2. Methods

2.1. Participants

Diffusion MRI and reading measures were collected for 55 children,
ranging in age from 7 to 12 years. Each subject completed a series of
reading tests, followed by an MRI scanning session. Subjects had a wide
range of reading abilities, as assessed using the Woodcock-Johnson
Basic Reading composite (untimed word and pseudo word reading ac-
curacy): Age-normed scores ranged from 52 to 121, with a sample
standard deviation of 14.084 (population mean=100, standard de-
viation= 15). Of these 55 subjects, 19 had repeated scanning sessions,
separated by 2 to 8 weeks. These data were used to assess scan-rescan
reliability (Pearson’s r calculated using mean tract values for session 1
vs. 2).

All participants were native English speakers with normal or cor-
rected-to-normal vision and no history of neurological damage or

psychiatric disorder. Subjects were screened using a mock scanner to
assess comfort and ability to hold still during the MRI sessions. We
obtained written consent from parents, and verbal assent from all child
participants. All procedures, including recruitment, consent, and
testing, followed the guidelines of the University of Washington Human
Subjects Division and were reviewed and approved by the UW
Institutional Review Board.

2.2. Diffusion MRI acquisition and pre-processing

All imaging data were acquired using a 3 T Phillips Achieva scanner
(Philips, Eindhoven, Netherlands) at the University of Washington
Diagnostic Imaging Sciences Center (DISC) using a 32-channel head
coil. An inflatable cap minimized head motion, and participants were
continuously monitored through a closed circuit camera system.

Diffusion-weighted magnetic resonance imaging (dMRI) data were
acquired at 2.0 mm3 spatial resolution with full brain coverage. Each
session consisted of two DWI scans, one with 32 non-collinear direc-
tions (b-value=800 s/mm2), and a second with 64 non-collinear di-
rections (b-value= 2000 s/mm2). Each of the DWI scans included 4
volumes without diffusion weighting (b-value= 0), and the TE (85ms)
was held constant across scans. These acquisition values were chosen to
optimally estimate both the NODDI and WMTI model parameters. In
addition to these data, a scan with 6 non-diffusion-weighted volumes
with a reversed phase encoding direction (posterior-anterior) was also
collected to correct for EPI distortions due to inhomogeneities in the
magnetic field using FSL’s topup tool (Andersson et al., 2003). Addi-
tional pre-processing was carried out using tools in FSL for motion and
eddy current correction (Andersson and Sotiropoulos, 2016). Data were
manually checked for imaging artifacts and excessive dropped volumes.
Given that subject motion can be especially problematic for the inter-
pretation of group differences in dMRI data (Yendiki et al., 2014), data
sets with mean slice-by-slice displacement> 0.7 mm were excluded
from further analysis. This resulted in a final sample size of 53 subjects.
As a quality check, we calculated the signal-to-noise ratio based on the
mean signal within a white matter mask divided by the standard de-
viation of the signal outside of a head mask within the b=0 images for
each subject. The mean SNR was 25.15, with a standard error across
subjects of 0.77.

2.3. Model fitting and analysis

Diffusion metrics were estimated using the diffusion kurtosis model
(Jensen et al., 2005), as implemented in DIPY (Garyfallidis et al., 2014).
Axonal water fraction (AWF) and extra-axonal diffusivities were then
estimated using the white matter tract integrity (WMTI) model
(Fieremans et al., 2011, 2010), also implemented in DIPY. Following
(Chung et al., 2018; Jensen et al., 2005), we restricted our analysis to
voxels with high directional diffusion (fractional anisotropy> 0.3), to
satisfy the modeling assumption of well-aligned fibers (Jensen et al.,
2005). It is common practice to apply spatial smoothing to the DKI data
prior to fitting the WMTI model, to reduce the influence of outliers. To
minimize partial volume effects, we opted for block-wise non-local
means de-noising (Coupe et al., 2008), implemented in DIPY. We also
fit the model using raw DKI outputs, to evaluate the overall impact of a
de-noising step in our analysis pipeline.

Intra-axonal volume fraction and orientation dispersion indices
were estimated using the NODDI model (Zhang et al., 2012), im-
plemented in Matlab. This provided maps of the intra-cellular tissue
volume fraction, orientation dispersion, and an isotropic (Viso) CSF
fraction across the brain for each subject. To allow a more direct
comparison to AWF, which represents the fraction of restricted water
relative to the total water within a voxel, we multiplied the intra-cel-
lular tissue volume fraction from the NODDI model by 1-Viso to obtain
a voxel volume fraction, ICVF. Since we limited our analysis to voxels
within the core of the white matter, the Viso contribution was typically
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0 or nearly 0, so this step had a relatively small effect. The orientation
dispersion index (ODI) is a mathematically independent metric that
quantifies the coherence of fiber orientations, with a low value in-
dicating aligned fibers.

Values from both modeling approaches were then mapped onto
fiber tracts identified in each subject’s native space using the
Automated Fiber Quantification (AFQ) software package (Yeatman
et al., 2012a,b), after initial generation of a whole-brain connectome
using probabilistic tractography (MRtrix 3.0)) (Tournier et al., 2004)
(see https://github.com/yeatmanlab/afq/wiki for documentation).
Fiber tracking was carried out on the aligned, distortion corrected, 64-
direction (b-value=2000 s/mm2) datasets for each subject. After seg-
mentation with AFQ, selected tracts were sampled into 100 evenly
spaced nodes, spanning termination points at the gray-white matter
boundary. Mean tracts values were estimated using the middle 60% of
each tract, to minimize the influence of crossing fibers near cortical
terminations, and to avoid potential partial volume effects at the white
matter / gray matter border. AWF from the WMTI model and ICVF/ODI
from the NODDI model were mapped onto each tract to create a ‘Tract
Profile’. Here, we depart slightly from the methods described in
(Yeatman et al., 2012a,b) and create these profiles by taking the median
value at each node, rather than a distance weighted mean, to create a
Tract Profile that is robust to outliers (afq.params.fiberWeighting =
‘median’). We compare results for median vs. weighted-mean (the de-
fault) Tract Profiles in Fig. 2. Statistical analysis was carried out using
software written in Matlab.

3. Results

3.1. WMTI and NODDI parameters index reliable individual differences
among children

We began by assessing scan-rescan reliability of the NODDI and

WMTI parameters in the non-denoised data of a group of 19 children
with repeated scanning sessions. As shown in Fig. 1, all parameters
were highly reliable: r=0.79 median reliability for AWF (range= 0.52
to 0.93); r=0.79 median reliability for ODI (range= 0.63 to 0.87);
and r=0.84 median reliability for ICVF (range=0.53 to 0.92). Re-
liability of DTI based metrics was similar: across tracts, median relia-
bility of FA was 0.77 (range 0.46 to 0.86) and median reliability of MD
was 0.70 (range 0.23 to 0.80). Fig. 1a shows scan re-scan reliability for
all tracts, while 1b further illustrates the reproducibility of DTI, NODDI,
and WMTI parameter values for 2 example tracts.

The fitted values for AWF were consistent with previously reported
estimates, ranging, for example, from 0.3 to 0.49 in the corpus callosum
(Fieremans et al., 2011, 2010; Tang et al., 1997). Median AWF values
were 0.31 for the posterior callosal tract (mean of 0.32, S.E.M across
subjects of 0.0030). NODDI ICVF was consistently higher across tracts

Fig. 1. Parameters are reliable and provide complementary information. (A) Reliability (Pearson’s r) in a group of 19 subjects (ranging in age from 8 to 12 years; see
Methods) over repeated scanning sessions, separated by 2 to 8 weeks. Median reliability across all tracts (white bars) was greater than r=0.75 for all three
parameters. Example maps are shown for one representative subject, with linear grayscale values ranging from 0 to 1 for each parameter. (B) Scatter plots show tract
average axonal water fraction (AWF), intra-cellular volume fraction (ICVF), and orientation dispersion indices (ODI) for all subjects and two example tracts,
estimated in Session 1 vs. Session 2. The identity line is shown in red; the line of best fit is shown in black for each plot. (C) Correlations between parameters from
DTI, WMTI, and NODDI for the full sample (n=53) in two example tracts. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).

Fig. 2. De-noising has minimal impact on tract-average parameters derived
from the WMTI model. Reliability (Pearson’s r) calculated for each tract in a
group of 19 subjects with repeated scanning sessions. Non-local means filtering
was used for image de-noising (see Section 2.3 for details).
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(as also noted previously, by (Jelescu et al., 2015)): Median ICVF was
0.54 in the posterior callosal tract (mean of 0.53, S.E.M across subjects
of 0.0033). Median ODI was 0.15 for the callosal tract (mean 0.17,
S.E.M. of 0.0043). This latter value is consistent with previous estimates
based on dMRI and histology (Mollink et al., 2017). As expected, ODI
values were slightly higher (0.2-0.3) for the association tracts.

Finally, to examine the extent to which different model parameters
index similar underlying features of the white matter, we computed
correlations between parameters from DTI, WMTI, and NODDI models.
Correlations between FA and ICVF, ODI, and AWF, respectively, ranged
from 0.45 to 0.73, from -0.27 to -0.74, and 0.36 to 0.72. Tract average
values are shown for two example tracts in Fig. 1c. Correlations among
all parameters for each tract are given in Table 1. Despite high scan re-
scan reliability, correlations among parameters were modest, on
average, consistent with the idea that the different modeling techniques
provide unique and complementary anatomical information.

3.2. Anatomically informed robust averaging substitutes for image de-
noising

A low signal-to-noise ratio and presence outliers are of particular
concern in developmental datasets since the time constraints associated
with scanning children often precludes repeated scans within a session,
and since these data sets are vulnerable to artifacts from motion and
other factors. De-noising is a common additional pre-processing step
prior to WMTI model fitting and it is thought to be important for im-
proving the SNR of the data and reducing the influence of outliers in the
DKI fits (Jelescu et al., 2015; Veraart et al., 2013). However, re-
searchers are often faced with a challenge when trying to select the
necessary and optimal de-noising steps for their data. To analyze the
effects of de-noising on scan-rescan reliability, we preprocessed our
data using a non-local means filtering approach with commonly used
parameter settings (as described in Section 2.3), and without de-
noising. As shown in Fig. 2, use of de-noising filter had a minimal in-
fluence on the results when median values were extracted from each
white matter tract using AFQ. De-noising produced highly reliable es-
timates, but the reliability was not higher than the non-denoised data.
Given the trend for the median reliability to be slightly higher without
de-noising, we opted to carry out the rest of our analyses using the non-
denoised data set.

While this result might seem counter-intuitive – de-noising does not
improve the scan-rescan reliability of parameter estimates – it makes
sense in the context of a tract-based analysis (i.e., tractometry) where
values are averaged over anatomically defined regions of interest. By

using AFQ to extract median values from each white matter tract, we
were able to alleviate the need for a de-noising step, since median va-
lues are inherently robust to outliers. For comparison, reliabilities are
plotted for the non-denoised data sampling the core of the white matter
using a using a distance weighted means approach (Yeatman et al.,
2012a,b). Reliability is substantially better when values are calculated
by taking the median, rather than the weighted-mean, of voxels in a
tract, because outlier voxels with extreme values do not bias the
median.

3.3. Developmental changes in white matter biology

Developmental changes in mean diffusivity and fractional aniso-
tropy (FA) have been described throughout the white matter (Lebel and
Beaulieu, 2011), and there has been recent interest in elaborating these
results using biophysical modeling (Chang et al., 2015; Genc et al.,
2017; Mah et al., 2017). Here, we begin by examining developmental
effects in the posterior callosal connections. We chose this as our target
for three reasons. First, the high coherence of axons within the posterior
callosal connections should allow for the most accurate estimates of
axon properties based on the WMTI model, since the model is less in-
terpretable in regions with complex fiber geometry. Second, histolo-
gical studies in non-human primates (Hopkins and Phillips, 2010) and
structural MRI studies in humans (Giedd et al., 1999, 1996; Kim et al.,
2007) indicate that the corpus callosum continues to develop and
myelinate throughout childhood and into adolescence, and diffusion
properties show large maturational effects within the age range of our
sample (McLaughlin et al., 2007; Snook et al., 2005). Finally, the pos-
terior callosum plays a particularly important role in the literature re-
lating DTI measures to reading skills (Dougherty et al., 2007).

As shown in Fig. 3a, ICVF and AWF both increase as a function of
age in this tract, while ODI declines. Thus, previously reported varia-
tion in FA likely reflects at least two distinct phenomena: Both the in-
crease in AWF/ICVF and the decrease in ODI would contribute to an
increase in FA during childhood.

We then carried out an exploratory analysis including all of the
commissural and association tracts. We summarize the results of that
analysis in Fig. 3b. In general, ODI decreased as a function of age, while
ICVF and AWF increased, and effect sizes varied across tracts. ICVF
increased with age bilaterally in the in the posterior callosal tracts (p<
0.05, Bonferroni corrected) and the inferior longitudinal fasciculus and
superior frontal callosal tracts (p< 0.05, uncorrected). ICVF also in-
creased in the left arcuate fasciculus and inferior frontal fasciculus, and
in the right superior longitudinal fasciculus (p< 0.05, uncorrected).
AWF increased in most tracts measured (all but the anterior callosal
connections; p < 0.05, uncorrected), with strongest effects in the left
and right arcuate and ILF and the anterior and parietal callosal con-
nections (p < 0.05, Bonferroni corrected). Meanwhile, ODI decreased
in a few callosal tracts – the posterior, superior parietal and motor tracts
– and in the right uncinate, but was otherwise stable. All of these effects
held in a complementary analysis that included motion as a covariate,
alongside age.

3.4. Biological underpinnings of reading-diffusion correlations

The structure of the posterior corpus callosum has previously been
shown to vary systematically with reading skill (Dougherty et al., 2007;
Frye et al., 2008; Hasan et al., 2012; Odegard et al., 2009), a finding
which we replicate here (Fig. 4). We further examined the relationship
between NODDI ICVF, NODDI ODI, and WMTI AWF values and reading
skills in the same region.

As shown in Fig. 5, ICVF and AWF both significantly correlate with
reading skill (Pearson’s r), while ODI does not. Although we report
standardized reading scores, it is possible that confounding effects of
age might exist since, for example, older struggling readers often have
lower standardized reading scores (i.e., lower scores relative to their

Table 1
Correlations among all parameters for each tract, based on the tract average
values for all subjects (n= 53).

Tract FAxAWF FAxICVF FAxODI AWFxICVF

Left IFOF 0.51 0.65 −0.61 0.54
Right IFOF 0.43 0.45 −0.31 0.48
Left ILF 0.65 0.73 −0.28 0.53
Right ILF 0.65 0.57 −0.27 0.58
Left SLF 0.36 0.60 −0.44 0.30
Right SLF 0.72 0.63 −0.41 0.58
Left Unc 0.46 0.71 −0.74 0.46
Right Unc 0.54 0.58 −0.72 0.32
Left Arc 0.54 0.59 −0.59 0.60
Right Arc 0.59 0.53 −0.62 0.59
CC Occiptal 0.71 0.88 −0.87 0.70
CC Anterior 0.47 0.55 −0.37 0.54
CC_Post_Parietal 0.47 0.70 −0.76 0.46
CC_Sup_Parietal 0.59 0.64 −0.78 0.56
CC_Motor 0.69 0.66 −0.70 0.62
CC_Sup_Frontal 0.31 0.50 −0.65 0.45
CC_Orb_Frontal 0.59 0.59 −0.63 0.59
CC_Temporal 0.82 0.78 −0.64 0.75
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peers). To control for a possible confounding effects of age, given the
age dependence of the NODDI and WMTI parameters, we fit a linear
model predicting reading scores from each parameter with age included
as a covariate. In this analysis, NODDI ICVF accounted for a significant
proportion of the variance in reading skill (F(1,41)= 5.33, p= 0.026).
Meanwhile, NODDI ODI was not a significant predictor of reading skill,
over and above age: F(1,41)= 1.33, p= 0.25. In line with this result,
AWF also predicted reading skill, over and above age: F(1,43)= 6.14,
p= 0.017. Including motion as a covariate did not change these results
(p= 0.014, 0.13, and 0.0069, respectively).

Finally, we carried out an exploratory analysis of each additional
tract in the data set, using the average value along each tract, as above.
As shown in Fig. 5, only ICVF in the anterior callosal tract and ODI in
the right arcuate significantly predicted reading skill, after controlling
for age. Thus, the correlation between axon properties and reading skill
was relatively specific to the posterior callosum in this sample. To
further examine the relationship between reading skill and the structure
of the posterior callosal tract, we divided the subjects into two groups:
“skilled” readers (n=29) with a basic reading score within a single
standard deviation of the population average, and “struggling readers”
(n= 24) with a basic reading score below that level (1 SD below the
population mean is a typical cutoff for defining dyslexia (see Rimrodt
et al., 2009; Shaywitz et al., 2002; Kubota et al., 2018). As shown in
Fig. 5c, the struggling readers tended to have higher ICVF along the
entire posterior callosal tract.

4. Discussion

Here we use two popular modeling techniques, “White Matter Tract
Integrity” or WMTI (Fieremans et al., 2011, 2010) and “Neurite Or-
ientation Dispersion and Density Imaging” or NODDI, to examine white
matter properties related to development and individual differences in
reading skill in a group of grade-school aged children. Both models
provided metrics that were reliable and within the expected range
based on previous estimates from histology and in vivo microscopy
(reviewed in (Jelescu and Budde, 2017)). We then used the AFQ trac-
tometry pipeline to generate anatomically informed, robust estimates of
model parameters for each tract without prior image denoising. We
note, however, that data with relatively low signal-to-noise might still
benefit from a denoising step and that denoising might be necessary for
a voxel-wise analysis. In general, diffusion MRI suffers from relatively
low signal-to-noise ratio, particularly when diffusion weighting is high

Fig. 3. Developmental changes in the callosal connections and association tracts. (A) Tract average AWF, ODI, and ICVF values plotted as a function of age (in
months) for the posterior callosal connections. (B) Anatomical rendering, with tracts showing significant (p < 0.05, Bonferroni corrected) age related variation in
ICVF, ODI, or AWF highlighted in red (positive correlation) or blue (negative correlation). Tracts rendered in less saturated red and blue show moderate age-related
variation (p < 0.05, uncorrected). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 4. Fractional anisotropy (FA) in the posterior callosum is negatively cor-
related with reading skill. Woodcock-Johnson Basic Reading scores are plotted
as a function of tract average FA values from the posterior callosal connections.
Replicating previous studies, we find a negative relationship between FA and
reading skill within this region: Individuals with higher FA are generally worse
readers.
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(larger b-values) (Jones and Basser, 2004), and so it is important to
examine the influence of noise to determine the optimal preprocessing
steps for a given dataset. Finally, we used the estimated parameters
from each model to examine age- and reading skill-related variation in
white matter properties, highlighting the utility of these models for
testing specific hypotheses about the biology of the white matter in
relation to cognitive development.

Model-estimated axonal water fraction (AWF) and intra-cellular
volume fraction (ICVF) increased linearly with age in a large collection
of anatomical tracts. ICVF increased with age bilaterally in the inferior
longitudinal fasciculus and the posterior and superior frontal callosal
tracts. ICVF also increased in the left arcuate fasciculus and inferior
frontal fasciculus, and in the right superior longitudinal fasciculus. AWF
increased in nearly every tract measured. Meanwhile, ODI decreased in

a few callosal tracts – the posterior, superior parietal and motor tracts –
and in the right uncinate, but was otherwise stable. Together, these
factors should contribute to a widespread developmental increase in
FA, as reported elsewhere (Lebel and Beaulieu, 2011). A recent study
examining FA and NODDI metrics showed a similar pattern: On
average, cortical tracts show relatively stable ODI during the first
decade of life, with a gradual increase that accelerates over the lifespan,
while neurite density increases sharply (Chang et al., 2015). These
findings are consistent with the idea that developmental changes in
white matter diffusion primarily reflect changes in axonal number/
density or myelination, since the former would influence ICVF and AWF
directly by changing the fraction of water restricted within axons, while
the latter would influence these parameters indirectly by reducing the
volume of the extra-axonal space. In contrast, although ODI does not

Fig. 5. Indices of tissue density in the posterior callosal connections correlate with reading skill. (A) Scatter plot showing Basic Reading as a function of tract average
NODDI ICVF, ODI, and WMTI AWF values. Insets show tract profiles for skilled vs. struggling readers for each parameter (mean +/- 1 standard error). (B) Anatomical
rendering, with tracts showing significant (p < 0.05) reading related variation, after controlling for age, ICVF, ODI, or AWF highlighted in red. (C) Tract profile
along the posterior callosal connections showing mean ICVF for skilled readers (WJ Basic Reading score at or above 85) and struggling readers (WJ Basic Reading
score below 85). The x-axis spans the middle 60% of each tract the where it was clipped prior to analysis (corresponding to black boundary lines in the example
anatomical renderings, at right). Shading represents one standard error of the mean. The locations of individual nodes showing a significant group difference in a t-
test (p < 0.05) are shown along the x-axis in red (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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vary over development in our sample, individual values were re-
producible across scanning sessions, suggesting that this parameter
captures stable individual variation in white matter organization.

Although AWF and ICVF both increased over development in the
posterior callosal connections, these properties also varied as a function
of reading skill, independent of age. The structure of the posterior
corpus callosum has previously been shown to differ in both children
and adults with dyslexia (Duara et al., 1991; Rumsey et al., 1996; von
Plessen et al., 2002v), and several studies have reported correlations
between reading-related skills and diffusion properties within posterior
callosal regions (Dougherty et al., 2007; Frye et al., 2008; Hasan et al.,
2012; Odegard et al., 2009). In the diffusion literature, higher radial
diffusivity and lower FA for this tract have been associated with higher
reading proficiency. These effects are somewhat counter intuitive,
given that they would suggest reduced density of inter-hemispheric
connections in strong readers, but they have been linked to the hy-
pothesis that reading-related functions are not as strongly left-later-
alized in struggling readers (Finn et al., 2014; Galaburda et al.,1986;
Galaburda et al., 1985). Higher tissue density (for example, more
densely packed or more heavily myelinated axons) in this region in
struggling readers could account for this effect, as hypothesized by
(Ben-Shachar et al., 2007). However, reduced axonal dispersion could
also account for the higher FA. Using the WMTI and NODDI models, we
were able to examine these possibilities: We found that axonal water
fraction and intra-cellular volume fraction of the posterior callosal tract
correlate with reading skill, while orientation dispersion does not.

Given the stable relationship between reading ability and the
structure of posterior callosal connections, it is plausible that differ-
ences in axonal properties within this region may emerge early in life
and influence subsequent development throughout the reading cir-
cuitry, even as the callosal connections themselves continue to mature.
In line with this hypothesis, the posterior callosal tract was remarkably
stable within subjects during an 8-week, intensive reading intervention
that prompted large changes in diffusion properties throughout a col-
lection of cortical association and projection tracts (Huber et al., 2018).
Indeed the callosum was one of just a few tracts that did not change
during the intensive reading skills training program. Thus, anatomical
differences that are stabilized prior to age 7 (the youngest individuals
included in our sample) in the posterior callosal tract may ultimately
shape reading development, while other portions of the reading net-
work remain amenable to change, perhaps reflecting compensatory
mechanisms that can emerge with educational intervention (Barquero
et al., 2014; Eden et al., 2004; Hoeft et al., 2011; Shaywitz et al., 2004).
Future work linking white matter biology to functional responses
within the reading circuitry should help to build a more nuanced view
of the computations involved, and the ways in which these circuits
develop and adapt to experience.

5. Conclusions

Advanced modeling techniques offer a bridge between diffusion
MRI and histology, allowing us to test specific, biologically based hy-
potheses about cognitive development. If data processing steps are
taken to ensure reliable parameter estimates, this approach holds pro-
mise for adding nuance to our understanding of the biological changes
that occur in human white matter over development and for revealing
the computational mechanisms associated with individual differences
in cognition.
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