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Abstract	

As	a	child	matures,	some	brain	circuits	stabilize	while	others	remain	plastic.	However,	the	literature	on	
maturational	 changes	 in	 the	brain’s	 capacity	 for	experience-dependent	plasticity	 is	primarily	based	on	
experiments	 in	 animals	 that	 mature	 over	 dramatically	 different	 time-scales	 than	 humans.	Moreover,	
while	 principles	 of	 plasticity	 for	 sensory	 and	 motor	 systems	 might	 be	 conserved	 across	 species,	 the	
myriad	 of	 late-developing	 and	 uniquely	 human	 cognitive	 functions	 such	 as	 literacy	 cannot	 be	 studied	
with	 animal	 models.	 Here	 we	 use	 an	 intensive	 reading	 intervention	 program,	 in	 combination	 with	
longitudinal	diffusion	MRI	measurements	 in	school-aged	children	with	dyslexia,	 to	model	 the	sensitive	
period	for	white	matter	plasticity	and	literacy	learning.	

	

Introduction	

Younger	brains	are	more	plastic.	That	the	brain’s	capacity	for	plasticity	diminishes	with	age	is	commonly	
held	as	an	axiom	of	development,	and	carries	important	implications	for	education	and	the	treatment	of	
developmental	disorders.	For	example,	developmental	dyslexia	is	rooted	in	neuroanatomical	differences	
within	well-characterized	 brain	 circuits	 1–6	 and	 interventions	 intended	 to	 remediate	 these	 deficits	 are	
presumed	to	be	more	effective	in	younger,	compared	to	older,	children	7,8.	

The	theory	that	plasticity	diminishes	over	development	takes	different	forms,	ranging	from	strict	critical	
periods	 which	 define	 windows	 of	 development	 during	 which	 specific	 experiences	 can	 shape	 the	
structure	of	a	neural	circuit	9–11,	to	sensitive	periods	in	which	circuits	exhibit	varying	degrees	of	plasticity	
and	 propensity	 for	 experience	 dependent	 change	 12,13.	Many	 aspects	 of	 cognition	may	 be	 subject	 to	
broad	 sensitive	 periods	 (e.g.,	 pre-puberty),	 during	 which	 large	 swaths	 of	 cortex	 remain	 malleable	 to	
environmental	demands	until	 rising	hormone	 levels	 stabilize	 the	 relevant	circuits	 14	 (reviewed	 in	 15).	A	
wealth	of	 research	 in	model	organisms	 including	mice	and	non-human	primates	has	 identified	cellular	
changes	 (e.g.,	 the	 refinement	 of	 ocular	 dominance	 columns	 in	 primary	 visual	 cortex	 11,16,17)	 that	 only	
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occur	 during	 isolated	 developmental	 windows,	 and	 mechanisms	 (e.g.,	 perineuronal	 nets	 18,19)	 that	
govern	 the	 transition	 from	 plasticity	 to	 stability	 for	 a	 circuit.	 A	 wealth	 of	 research	 in	 humans	 has	
identified	aspects	of	learning	(e.g.,	the	sound	inventory	of	language	12,20)	that	become	more	difficult	with	
age.	 However,	 to	 our	 knowledge,	 there	 is	 no	 data	 directly	 linking	 changes	 in	 the	 human	 capacity	 for	
learning	 high-level	 cognitive	 functions	 to	 changes	 in	 the	 brain’s	 capacity	 for	 experience-dependent	
structural	 plasticity.	 While	 it	 is	 appealing	 to	 assume	 that	 the	 timing	 of	 critical/sensitive	 periods	
discovered	 in	 animal	models	might	 generalize	 to	 human,	 there	 are	 dramatic	 differences	 in	 the	 time-
course	of	maturation	across	species.	For	example	the	myelination	process	is	prolonged	by	more	than	a	
decade	 in	 humans	 compared	 to	 other	 primate	 species,	 even	 after	 adjusting	 for	 developmental	
milestones	 such	 as	 puberty	 21.	 Therefore,	 plasticity	 in	 humans	 might	 not	 be	 subject	 to	 the	 same	
constraints	 as	 other	 species,	 highlighting	 the	 importance	 of	 understanding	 the	 principles	 governing	
plasticity	in	the	human	brain.	

The	 two	 principal	 challenges	 to	 studying	 experience-dependent	 plasticity	 in	 humans	 are,	 first,	
establishing	an	experimental	paradigm	that	 is	appropriate	for	human	research	subjects	and	capable	of	
inducing	large-scale	structural	changes	in	the	brain	and,	second,	developing	non-invasive	measurements	
that	 are	 sensitive	 to	 changes	 in	 cellular	 properties	 of	 human	 brain	 tissue.	 Our	 previous	 work	
demonstrated	 that	 combining	 an	 intensive	 reading	 intervention	 program	 with	 longitudinal	 diffusion-
weighted	 magnetic	 resonance	 imaging	 (dMRI)	 measurements	 in	 children	 with	 dyslexia	 is	 a	 powerful	
paradigm	for	studying	experience-dependent	changes	in	the	white	matter	22.		In	a	sample	of	24	children	
between	 7	 and	 13	 years	 of	 age,	 eight	 weeks	 of	 targeting	 training	 in	 reading	 skills	 caused	 large-scale	
changes	 in	 tissue	properties	 for	multiple	anatomical	 tracts	 (Cohen’s	d	 =	0.5-1.0	across	different	white	
matter	 tracts),	 that	were	 coupled	 to	 large	 improvements	 in	 reading	 skills	 (Cohen’s	d	 =	 0.5-1.0	 across	
different	reading	tests).	Here	we	capitalize	on	this	paradigm,	and	a	larger	sample	of	subjects	(N=34),	to	
test	the	hypothesis	that	there	is	a	sensitive	period	for	this	circuit	and	that	the	amount	of	intervention-
driven	 plasticity	 measured	 in	 the	 white	 matter	 depends	 on	 the	 age	 of	 the	 subject.	 Specifically,	 we	
consider	three	hypotheses:	

1. Younger	 subjects	 (<9	 years	 of	 age)	 will	 show	 larger	 intervention-driven	 changes	 in	 diffusion	
properties	 compared	 to	 older	 subjects	 (>9	 years	 of	 age).	 The	 magnitude	 of	 change	 for	 each	
subject	 will	 be	 computed	 as	 (1)	 the	 difference	 between	 the	 pre-	 and	 post-intervention	
measurement	sessions	and	(2)	a	linear	fit	summarizing	the	rate	of	change	in	diffusion	properties	
as	a	function	of	intervention	hours.	Baseline	reading	scores	will	be	considered	as	a	covariate	in	
case	there	is	a	difference	in	plasticity	between	more	and	less	impaired	readers.	

2. Younger	subjects	will	show	more	rapid	changes	compared	to	older	subjects,	irrespective	of	the	
absolute	magnitude	of	change.	The	timescale	of	change	for	each	subject	will	be	computed	as	(1)	
the	percentage	of	overall	change	that	occurs	within	the	first	three	weeks	of	the	intervention	and	
(2)	the	growth	rate	observed	between	the	first	2	sessions.	

3. Alternatively,	we	may	observe	 the	same	magnitude	and	 time-course	of	experience-dependent	
white	matter	plasticity	over	this	age	range	(7-13	years	of	age).	Such	a	finding	would	imply	that,	
for	the	training	paradigm	and	age	range	studied	here,	age	is	not	a	major	factor	in	determining	a	
child’s	response	to	intervention,	and	that	the	sensitive	period	for	these	white	matter	networks	
extends	from	early	elementary-school	into	young	adulthood.	
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Methods	

Rationale	for	pre-registration	

Understanding	maturational	changes	in	plasticity	that	occur	over	the	course	of	elementary	school	is	an	
important	 scientific	 challenge	 with	 practical	 implications	 for	 education	 practice.	 Our	 previous	 work	
established	 an	 experimental	 paradigm	 (intensive	 reading	 intervention	 program)	 and	 measurement	
protocol	 (longitudinal	diffusion	MRI	measurements)	 for	quantifying	experience-dependent	plasticity	 in	
human	white	matter	 (Huber	 et	 al.,	 2018,	 Nature	 Communications,	 22).	 Based	 on	 these	 data,	 a	 power	
analysis	 confirms	 that	we	have	 the	 statistical	 power	 to	detect	meaningful	maturational	 differences	 in	
experience-dependent	 plasticity,	 if	 such	 differences	 exist.	 However,	 if	 the	 data	 indicate	 that	 older	
(middle-school	aged)	children	show	the	same	 large-scale	changes	 in	white	matter	as	younger	 (1st	and	
2nd	 grade)	 children,	 it	 would	 substantially	 revise	 our	 preconceived	 notions	 about	 brain	 maturation,	
plasticity,	and	learning	in	an	academic	setting.	Therefore,	the	outcome	of	the	proposed	investigation	will	
answer	fundamental	scientific	questions	irrespective	of	the	results.	Hence,	we	wish	to	pre-register	our	
work	in	order	to	obtain	a	thorough	review	of	our	methodology	and	reasoning	before	analyzing	the	age-
dependence	of	our	previously	reported	effects.		

We	 believe	 that	 pre-registration	 is	 important	 since	 our	 conclusions	 will	 depend	 on	 how	 we	
operationalize	 our	 hypotheses	 and	 process	 our	 data.	 Hypothesizing	 after	 knowing	 the	 results,	 or	
“HARKing”,	 has	 recently	 been	 highlighted	 as	 a	 major	 issue	 contributing	 to	 a	 publication	 bias	 in	 the	
biomedical	and	social	 sciences	23.	Munafo	and	colleagues	maintain	 that	practices	such	as	HARKing	are	
often	 subconscious	 and	 unintentional,	 reflecting	 well-known	 psychological	 biases	 that	 are	 difficult	 to	
avoid.	Hence,	 in	 line	with	their	perspective,	we	acknowledge	the	possibility	 that	our	approach	to	data	
analysis	might	change	in	a	manner	that	 is	more	likely	to	confirm	a	statistical	relationship	between	age	
and	plasticity,	rather	than	a	lack	thereof.	While	registration	prior	to	data	collection	is	optimal,	there	are	
many	cases	(such	as	the	present	one)	where	it	is	not	feasible.	In	our	case,	studying	maturational	changes	
in	 the	 brain’s	 capacity	 for	 plasticity	 first	 required	 establishing	 the	 sensitivity	 of	 our	 paradigm,	 and	
determining	the	pattern	of	changes	that	are	induced	by	the	intervention.	Our	previous	work	optimized	
our	 analysis	 pipeline	 to	 reliably	 measure	 white	 matter	 plasticity	 in	 an	 individual,	 and	 made	 pre-
registration	possible	for	the	present	study.	Thus,	the	data	acquisition	and	analysis	methods	are	identical	
to	those	reported	 in	Huber	et	al.,	 (2018),	with	the	addition	of	10	new	 intervention	subjects	 that	were	
run	as	a	replication	cohort.	

Modeling	sensitive	periods	

A	 sensitive	 (or	 critical)	 period	 is	 a	 window	 of	 development	 during	 which	 a	 circuit	 is	 particularly	
responsive	 to	 environmental	 inputs	 18.	 As	 the	 balance	 between	 excitatory	 and	 inhibitory	 signaling	
changes,	the	capacity	for	plasticity	within	a	circuit	increases,	marking	the	onset	of	a	sensitive	period.	The	
sensitive	 period	 remains	 open	 until	 molecular	 brakes	 close	 the	 window	 for	 plasticity.	 However,	 this	
developmental	 period	 need	 not	 have	 a	 strict	 boundary,	 and	 may	 instead	 gradually	 close,	 leading	 to	
diminshed	 plasticity	 over	 a	 period	 of	 months	 or	 years.	 We	 therefore	 model	 this	 time-course	 as	 a	
Gaussian	function	where	the	mean	of	the	Guassian	(μ)	marks	the	age	(x)	of	peak	plasticity,	the	height	of	
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the	Gaussian	(β)	denotes	the	magnitude	of	plasticity	that	is	possible,	and	the	width	of	the	Gaussian	(σ)	
corresponds	to	the	window	of	development	during	which	the	sensitive	period	is	open.		

𝛽𝑒!
(!!!)!
!!! 	

If	we	assume	that	for	literacy	the	sensitive	period	is	near	its	peak	at	the	beginning	of	elementary	school	
when	children	begin	formal	reading	instruction,	then	a	narrow	sensitive	period	(e.g.,	σ=1,	black	curve	in	
Figure	1a)	would	imply	that	the	window	for	plasticity	in	the	reading	circuitry	is	shut	by	3rd	or	4th	grade,	
wheras	a	broad	sensitive	period	(e.g.,		σ=6,	red	curve	in	Figure	1a)	would	imply	that	the	circuit	remains	
plastic	 through	 young	 adulthood.	 Based	 on	 these	 hypothetical	 sensitive	 periods,	 ranging	 from	σ=1	 to	
σ=6,	we	simulate	our	precision	for	estimating	model	parameters	(Figure	1b,c)	and	detecting	a	significant	
correlation	between	plasticity	and	age	(Figure	1d),	based	on	effects	reported	in	Huber	et	al.,	(2018).		

Figure	1:	Simulation	of	sensitive	periods.	 (a)	Sensitive	periods	are	modeled	as	a	Guassian	function	where	the	
width	of	 the	Gaussian	 (sigma)	defines	 the	window	of	plasticity	 (see	 simulateAgeEffect.m).	 The	 light	gray	box	
denotes	 the	 age	 range	 of	 subjects	 in	 our	 study.	 Simulated	 data	was	 generated	 from	 the	Gaussian	model	 by	
adding	 noise,	 where	 the	 amount	 of	 noise	 was	 calibrated	 based	 on	 the	 session-to-session	 variability	 of	 the	
measurements	 in	 the	 absenence	 of	 intervention	 (estimated	 from	 data	 in	 control	 subjects).	 Six	 curves	 are	
illustrated	for	potential	models	ranging	from	sigma=1	to	sigma=6	and	the	standard	error	of	the	model	fit	to	the	
simulated	data	is	illustrated	for	one	curve	(sigma=2).	(b)	The	average	error	on	the	sigma	parameter	estimate	is	
shown	 for	 different	 potential	models	 given	 the	 signal	 to	 noise	 ratio	 of	 our	 data.	 (c)	 Confidence	 intervals	 are	
displayed	 based	 on	 models	 with	 different	 sigma	 parameters.	 (d)	 Based	 on	 simulating	 data	 from	 different	
sensitive	period	models,	we	calculate	 the	probability	of	detecting	a	significant	correlation	 (p	<	0.05)	between	
plasticity	and	age.	Simulation	code	is	available	at:	https://github.com/yeatmanlab/plasticity	

Huber	et	al.,	(2018)	reported	the	amount	of	change	measured	in	the	white	matter	over	the	course	of	a	
tightly	 controlled	and	 intensive	 reading	 intervention	program	delivered	 to	elementary	 school	 children	
with	dyslexia.	If	we	operationalize	white	matter	plasticity	as	the	magnitude	of	change	in	mean	diffusivity	
(MD)	measured	over	the	course	of	the	intervention	program,	then	we	can	scale	each	curve	such	that	the	
mean	value	over	the	measured	age	range	(gray	shading	Figure	1a)	 is	equal	to	the	average	MD	change	
reported	in	the	sample.	The	standard	deviation	of	MD	change	measured	in	the	control	group	(which	did	
not	undergo	the	intervention	and	did	not,	on	average,	show	any	change	over	the	measurement	period)	
is	used	as	an	estimate	of	noise.	We	 then:	 (1)	 simulate	10,000	datasets	 coming	 from	sensitive	periods	
with	different	σ	values	ranging	from	1	to	6,	and	add	Gaussian	noise	to	each	simulated	dataset	based	on	
the	 noise	 estimate	 in	 the	 control	 group,	 (2)	 fit	 the	 sensitive	 period	model	 to	 each	 simulated	 dataset	
based	on	non-linear	optimization,	(3)	calculate	the	Pearson	correlation	between	age	and	MD	change	for	
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each	dataset	and,	(4)	calculate	the	reliability	of	the	fitted	parameters	and	correlation	coefficients.	This	
simulation	demonstrates	that	 if	 the	sensitive	period	for	plasticity	 in	the	reading	circuitry	closes	before	
14	years	of	age,	then	we	would	have	a	high	liklihood	of	detecting	a	significant	correlation	(>90%),	and	
would	be	able	to	accurately	estimate	parameters	of	the	sensitive	period	model.	 If	the	sensitive	period	
extends	 through	adolecence,	 then	 the	upper	bound	on	our	parameter	estimates	would	be	unreliable.	
For	example,	if	the	true	sensitive	period	is	σ=5,	meaning	that	the	window	for	plasticity	closes	around	17	
years	of	age,	then	we	would	still	be	able	to	infer	that	the	sensitive	period	is	open	through	elementary	
school	(lower	bound	on	confidence	interval),	but	could	not	reliably	infer	the	upper	bound.	

Participants		

The	 intervention	 group	 included	 34	 children	 (14	 female),	 ranging	 in	 age	 from	 7	 to	 12	 years,	 who	
participated	in	an	intensive	summer	reading	program.	Subjects	were	recruited	based	on	parent	report	of	
reading	 difficulties	 and/or	 a	 clinical	 diagnosis	 of	 dyslexia.	 A	 total	 of	 132	 behavioral	 and	MRI	 sessions	
were	carried	out	with	this	group.		

An	additional	66	behavioral	and	MRI	sessions	were	conducted	in	a	non-intervention	control	group	with	
25	participants,	who	were	matched	 for	 age	but	 not	 reading	 level.	 These	 subjects	were	 recruited	 as	 a	
control	group	to	assess	the	stability	of	our	measurements	over	the	repeated	sessions	and	this	stability	
estimate	was	used	as	an	estimate	of	noise	in	our	simulations	(Figure	1).	Control	subjects	participated	in	
the	same	experimental	sessions,	but	did	not	receive	the	reading	 intervention.	Twelve	of	 these	control	
subjects	 had	 typical	 reading	 skills	 (5	 female),	 defined	 as	 a	 score	 of	 85	 or	 greater	 on	 the	Woodcock	
Johnson	 Basic	 Reading	 composite	 and	 the	 TOWRE	 Index.	 All	 subjects	 completed	 a	 battery	 of	 reading	
tests	prior	 to	 the	 intervention	period	 to	 confirm	parent	 reports	 and	establish	a	baseline	 for	 assessing	
growth	in	reading	skill.		

All	participants	were	native	English	speakers	with	normal	or	corrected-to-normal	vision	and	no	history	of	
neurological	 damage	 or	 psychiatric	 disorder.	We	 obtained	 written	 consent	 from	 parents,	 and	 verbal	
assent	from	all	child	participants.	All	procedures,	 including	recruitment,	consent,	and	testing,	 followed	
the	 guidelines	 of	 the	 University	 of	 Washington	 Human	 Subjects	 Division	 and	 were	 reviewed	 and	
approved	by	the	UW	Institutional	Review	Board.	

Reading	intervention	

24	 intervention	 subjects	 reported	 in	Huber	et	 al.,	 2018	were	enrolled	 in	8	weeks	of	 the	 Seeing	 Stars:	
Symbol	 Imagery	 for	 Fluency,	 Orthography,	 Sight	 Words,	 and	 Spelling24	 program	 at	 three	 different	
Lindamood-Bell	Learning	Centers	in	the	Seattle	area.	An	additional	replication	cohort	of	10	subjects	was	
run	using	 the	exact	 same	 training	protocol	 at	 the	University	of	Washington	 campus.	 The	 intervention	
program	 consists	 of	 directed,	 one-on-one	 training	 in	 phonological	 and	 orthographic	 processing	 skills,	
lasting	 four	hours	each	day,	 five	days	a	week.	 The	 curriculum	uses	an	 incremental	 approach,	building	
from	letters	and	syllables	to	words	and	connected	texts,	emphasizing	phonological	decoding	skills	as	a	
foundation	for	spelling	and	comprehension.	A	hallmark	of	this	 intervention	program	is	the	 intensity	of	
the	training	protocol	(4	hours	a	day,	5	days	a	week)	and	the	personalized	approach	that	comes	with	one-
on-one	instruction.		
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Experimental	Sessions	

Subjects	 participated	 in	 four	 experimental	 sessions	 separated	 by	 roughly	 2.5-week	 intervals.	 For	 the	
intervention	group,	sessions	were	scheduled	to	occur	before	the	intervention	(baseline),	after	2.5	weeks	
of	intervention,	after	5	weeks	of	intervention,	and	at	the	end	of	the	8-week	intervention	period.	For	the	
control	 group,	 sessions	 followed	 the	 same	 schedule	while	 the	 subjects	 attended	 school	 as	usual.	 This	
allowed	us	to	control	for	changes	that	would	occur	due	to	typical	development	and	learning	during	the	
school	year.		

In	 addition	 to	 MRI	 measurements,	 described	 in	 greater	 detail	 below,	 we	 administered	 a	 battery	 of	
behavioral	tests	in	each	experimental	session.	These	included	sub-tests	from	the	Wechsler	Abbreviated	
Scales	of	 Intelligence	 (WASI),	Comprehensive	Test	of	Phonological	Processing	 (CTOPP-2),	Test	of	Word	
Reading	Efficiency	(TOWRE-2)	and	the	Woodcock	Johnson	IV	Tests	of	Achievement	(WJ-IV).		

MRI	Acquisition	and	Processing	

All	 imaging	data	were	acquired	with	a	3T	Phillips	Achieva	scanner	 (Philips,	Eindhoven,	Netherlands)	at	
the	University	of	Washington	Diagnostic	Imaging	Sciences	Center	(DISC)	using	a	32-channel	head	coil.	An	
inflatable	 cap	 was	 used	 to	 minimize	 head	 motion,	 and	 participants	 were	 continuously	 monitored	
through	a	closed	circuit	camera	system.	Prior	to	the	first	MRI	session,	all	subjects	completed	a	session	in	
an	MRI	simulator,	which	helped	them	to	practice	holding	still,	with	experimenter	feedback.	This	practice	
session	also	allowed	subjects	to	experience	the	noise	and	confinement	of	the	scanner	prior	to	the	actual	
imaging	sessions,	to	help	them	feel	comfortable	and	relaxed	during	data	collection.		

Diffusion-weighted	 magnetic	 resonance	 imaging	 (dMRI)	 data	 were	 acquired	 with	 isotropic	 2.0mm3	
spatial	 resolution	 and	 full	 brain	 coverage.	 Each	 session	 consisted	 of	 2	 DWI	 scans,	 one	 with	 32	 non-
collinear	 directions	 (b-value	 =	 800	 s/mm2),	 and	 a	 second	 with	 64	 non-collinear	 directions	 (b-value	 =	
2,000	s/mm2).	 	Each	of	the	DWI	scans	also	contained	4	volumes	without	diffusion	weighting	(b-value	=	
0).	 In	 addition,	 we	 collected	 one	 scan	 with	 6	 non-diffusion-weighted	 volumes	 and	 a	 reversed	 phase	
encoding	 direction	 (posterior-anterior)	 to	 correct	 for	 EPI	 distortions	 due	 to	 inhomogeneities	 in	 the	
magnetic	 field.	 Distortion	 correction	 was	 performed	 using	 FSL’s	 topup	 tool	 25,26.	 Additional	 pre-
processing	 was	 carried	 out	 using	 tools	 in	 FSL	 for	 motion	 and	 eddy	 current	 correction,	 and	 diffusion	
metrics	were	 fit	 using	 the	diffusion	 kurtosis	model	 86	 as	 implemented	 in	DIPY	 27.	Data	were	manually	
checked	 for	 imaging	 artifacts	 and	 excessive	 dropped	 volumes.	 Given	 that	 subject	 motion	 can	 be	
especially	problematic	for	the	interpretation	of	group	differences	in	DWI	data,	data	sets	with	mean	slice-
by-slice	RMS	displacement	>	0.7mm	were	excluded	 from	all	 further	analyses.	Datasets	 in	which	more	
than	10%	of	volumes	were	either	dropped	or	contained	visible	artifact	were	also	excluded	from	further	
analysis.	

White	Matter	Tract	Identification	

Fiber	 tracts	were	 identified	 for	each	subject	using	 the	Automated	Fiber	Quantification	 (AFQ)	 software	
package	28,	after	initial	generation	of	a	whole-brain	connectome	using	probabilistic	tractography	(MRtrix	
3.0)	 29,30.	 Fiber	 tracking	 was	 carried	 out	 on	 an	 aligned,	 distortion	 corrected,	 concatenated	 dataset	
including	all	four	of	the	64-direction	(b-value	=	2,000	s/mm2)	datasets	collected	across	sessions	for	each	
subject.	This	allowed	us	 to	ensure	 that	estimates	of	diffusivity	and	diffusion	anisotropy	across	 session	
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were	 mapped	 to	 the	 same	 anatomical	 location	 for	 each	 subject,	 since	 slight	 differences	 in	 diffusion	
properties	over	the	course	of	 intervention	can	influence	the	region	of	 interest	that	 is	 identified	by	the	
tractography	algorithm.		

Quantifying	White	Matter	Tissue	Properties	

To	 detect	 intervention-driven	 changes	 in	 the	 white	 matter,	 we	 fit	 the	 diffusion	 kurtosis	 model	 as	
implemented	in	DIPY	to	the	diffusion	data	collected	in	each	session	31,32.	The	diffusion	kurtosis	model	is	
an	 extension	 of	 the	 diffusion	 tensor	model	 that	 accounts	 for	 the	 non-Gaussian	 behavior	 of	 water	 in	
heterogeneous	 tissue	 containing	multiple	barriers	 to	diffusion	 (cell	membranes,	myelin	 sheaths,	 etc.).	
After	model	fitting,	diffusion	metrics	were	projected	onto	the	segmented	fiber	tracts	generated	by	AFQ.	
Selected	 tracts	were	 sampled	 into	100	evenly	 spaced	nodes,	 spanning	 termination	points	at	 the	gray-
white	matter	boundary,	and	then	diffusion	properties	 (mean,	radial,	and	axial	diffusivity	 (MD,	RD,	AD)	
and	fractional	anisotropy	(FA))	were	mapped	onto	each	tract	to	create	a		“Tract	Profile”.		

Statistical	Analysis	

Data	analysis	was	carried	out	using	software	written	 in	MATLAB.	To	assess	change	over	 the	course	of	
intervention,	we	 first	 averaged	 the	middle	 60%	 of	 each	 tract	 to	 create	 a	 single	 estimate	 of	 diffusion	
properties	 for	 each	 subject	 and	 tract.	 We	 selected	 the	 middle	 portion	 to	 eliminate	 the	 influence	 of	
crossing	 fibers	 near	 cortical	 terminations,	 and	 to	 avoid	 potential	 partial	 volume	 effects	 at	 the	 white	
matter	 /	gray	matter	border.	Mean	 tract	values	were	 then	entered	 into	a	 linear	mixed	effects	model,	
with	 fixed	 effects	 of	 intervention	 time	 (either	 hours	 of	 training,	 or	 session	 entered	 as	 a	 categorical	
variable)	and	a	random	effect	of	subject.	Code	and	data	from	Huber	et	al.,	(2018)	can	be	accessed	from	
the	GitHub	repository:	https://github.com/yeatmanlab/Huber_2018_NatCommun.	
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