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Abstract: This work evaluates the potential in diagnostic application of a new advanced neuroimaging meth-
od, which delineates the profile of tissue properties along the corticospinal tract (CST) in amyotrophic lateral
sclerosis (ALS), by means of diffusion tensor imaging (DTI). Twenty-four ALS patients and twenty-four demo-
graphically matched healthy subjects were enrolled in this study. The Automated Fiber Quantification (AFQ),
a tool for the automatic reconstruction of white matter tract profiles, based on a deterministic tractography
algorithm to automatically identify the CST and quantify its diffusion properties, was used. At a group level,
the highest non-overlapping DTI-related differences were detected in the cerebral peduncle, posterior limb of
the internal capsule, and primary motor cortex. Fractional anisotropy (FA) decrease and mean diffusivity (MD)
and radial diffusivity (RD) increases were detected when comparing ALS patients to controls. The machine
learning approach used to assess the clinical utility of this DTI tool revealed that, by combining all DTI metrics
measured along tract between the cerebral peduncle and the corona radiata, a mean 5-fold cross validation
accuracy of 80% was reached in discriminating ALS from controls. Our study provides a useful new neuroim-
aging tool to characterize ALS-related neurodegenerative processes by means of CST profile. We demonstrated
that specific microstructural changes in the upper part of the brainstem might be considered as a valid bio-
marker. With further validations this method has the potential to be considered a promising step toward the
diagnostic utility of DTI measures in ALS. Hum Brain Mapp 38:727–739, 2017. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurode-
generative disease with a diagnosis based on the abnor-
malities in upper and lower motor neurons, which lead to
a progressive atrophy and weakness of the limbs and
respiratory muscles.

Neuroimaging studies have strongly contributed to our
understanding of neurobiological mechanisms underlying
ALS, and, in particular, diffusion tensor imaging (DTI) has
proven to be the most reliable magnetic resonance imaging
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(MRI) technique for assessing microstructural pathological
abnormalities in ALS patients [Agosta et al., 2010; Chi�o
et al., 2014; Turner et al., 2012]. A recent meta-analysis
pooling the results of 77 DTI studies demonstrated that
the main structural abnormalities characterizing ALS
patients were localized in the corticospinal tract (CST)
extending to the frontal white matter as well as in a small
region in the posterior limb of the internal capsule [Li
et al., 2012]. The degeneration of the CST in ALS is consis-
tent with pathologic findings [Hirano, 1991; Smith, 1960]
and metabolic MRI studies [Sudharshan et al., 2011; Wang
et al., 2006] and its neurodegeneration is mainly expressed
by the presence of reduced values of fractional anisotropy
(FA) [Ciccarelli et al., 2006, 2009; Cosottini et al., 2005; Ellis
et al., 1999; Karlsborg et al., 2004; Sage et al., 2007, 2009;
Sarica et al., 2014; Toosy et al., 2003; Van der Graaff et al.,
2011]. Other studies have also found increased mean diffu-
sivity (MD) values, in particular, along the internal capsule
and the pons [Karlsborg et al., 2004] and the cerebral
peduncle [Hong et al., 2004].

Despite the high number of DTI studies on ALS, the
development of reliable diagnostic markers at an individu-
al level remains an open question. The vast majority of
ALS imaging studies, using either voxel-based or regions
of interest (ROI)-based methods, have only reported differ-
ences between patients and controls at a group level [Bede
and Hardiman, 2014; Chi�o et al., 2014; Li et al., 2012].
These studies have yielded consistent neuroanatomical
patterns of pathological changes in ALS patients but with
overlapping MRI-related values, not readily transferable to
the clinical practice. Moreover, these neuroimaging
approaches have specific shortcomings that might have
increased the inconsistencies of data in the literature [Abe
et al., 2010; Smith et al., 2006; Toga, 2015]. In the ROI-
based methods, the user interaction is required to specify
the ROI, and the variability of ROI size, shape, number,
and location could influence the significance of the group
analysis [Kanaan et al., 2006]. Instead, the main drawback
of the voxel-based approach is the subjects’ registration
phase in which a common coordinate system is applied
and each voxel is compared. This critical phase could lead
to alignment errors and make associating differences
between groups to a specific tract difficult [Toga, 2015]. To
overcome these limitations, the neuroimaging community
has developed a new frontier of tract-oriented methods,
which quantify diffusion parameters along each fiber tract,
creating a “tract profile” of diffusion parameters [Yeatman
et al., 2012]. The tract-oriented approaches provide profiles
of diffusion parameters for each tract, preserving spatial
information that are otherwise lost in ROI-methods, and
maintaining anatomical correspondence unlike in the
voxel-based. Thus, tract-oriented methods provide a more
detailed anatomical picture of disease progression [Yeat-
man et al., 2012].

The aim of this work was to evaluate the potential of a
new advanced imaging method to serve as a biomarker in

ALS. For this purpose, we applied, for the first time, the
tract profile approach [Yeatman et al., 2012], to better
define neurodegenerative processes underlying ALS.
Moreover, to validate the group-based evidence extracted
from this technique in a clinically applicable diagnostic
usage, we used a machine learning technique that, unlike
univariate statistical methods, is able to predict the diag-
nosis with an estimated accuracy. Machine learning algo-
rithms in clinical neuroimaging has been the most
important computational development in the last years to
satisfy the primary need of clinicians [Orr�u et al., 2012].
Although several studies have assessed the diagnostic val-
ue of these techniques applied on Parkinson’s disease
[Cerasa, 2016] and Alzheimer’s disease realms [Cuingnet
et al., 2011; Salvatore et al., 2016], achieving over 90%
accuracy for disease state classification, machine learning
has sparsely been employed for the diagnosis of ALS.
With the aim of exploring the latter, we adopted the Ran-
dom Forest classifier, which has been successfully applied
for reducing high dimensional dataset in many scientific
realms, by providing a feature important measure [Brei-
man, 2001]. In the field of neuroscience, Random Forest
has been used to assess the relative importance of several
measures acquired with neuronal ensemble recording
methods [Loh and Shih, 1997] and resulted in significantly
higher accuracy compared with other classifiers in the pre-
diction of Alzheimer’s [Lebedev et al., 2014].

MATERIALS AND METHODS

Subjects and Clinical Parameters

ALS patients were enrolled from the Neurology unit of
the University “Magna Graecia” of Catanzaro. An expert
neurologist (P.V.), blind to the aim of this study, with 20
years of experience in motor neuron disorders performed
a complete clinical examination. All patients with ALS met
the revised El Escorial criteria for probable, probable labo-
ratory supported or definite ALS [Brooks et al., 2000]. All
ALS patients were right-handed and riluzole treatment-
na€ıve. Motor skills were assessed according to the ALS
functional rating scaled revised (ALSFRS-R) [Cedarbaum
et al., 1999]. Moreover, to define and quantify the presence
of bulbar involvement, we used the score on the three bul-
bar items of the ALSFRS-R (speech, sialorrhoea, and swal-
lowing, a score of four per item representing normal
function). We considered as exclusion criteria: the presence
of: (a) multifocal motor neuropathy and paraneoplastic
neuropathy, according to nerve conduction examinations;
(b) forms of dementia, according to the structured clinical
interview of the DSM-IV [Diagnostic and Statistical Manu-
al of Mental Disorders, 4th Edition, American Psychiatric
Association, 1994]; (c) history of cerebrovascular disease,
head trauma, hypertension or diabetes. Only two patients
with a co-morbid diagnosis of frontotemporal dementia
according to the Neary Criteria [Neary et al., 1998] were
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excluded because of the confounding effects of imaging
changes associated with this phenotype. Finally, 24 ALS
patients were enrolled and underwent neuroimaging
exam. All clinical details are reported in Table I.

Twenty-four age- and sex-matched, right-handed, non-
demented, healthy controls [mean age 6 SD 61 6 8.3 (t-test
P-level5 0.79); 62.5% female, (v2, P-level5 0.558)] with no
previous history of neurological or psychiatric diseases
and with normal MRI of the brain were matched for
demographical variables with patients. All participants
gave written informed consent, which was approved by
the Ethical Committee of the University “Magna Graecia”
of Catanzaro, according to the Helsinki Declaration.

Data Acquisition

Brain MRI was performed according to our routine pro-
tocol [Sarica et al., 2014] by a 3 T scanner with an 8-
channel head coil (Discovery MR-750, General Electric,
Milwaukee, WI). The protocol included: (a) whole-brain
T1-weighted scan MRI scanning (SPGR; TE/TR 5 3.7/9.2
ms, flip angle 128, voxel- size 1 3 1 3 1 mm3); (b)
diffusion-weighted volumes, acquired by using spin-echo
echo-planar imaging (TE/TR 5 87/10,000 ms, bandwidth
250 kHz, matrix size 128 3 128, 80 axial slices, voxel size
2.0 3 2.0 3 2.0 mm3) with 27 equally distributed

orientations for the diffusion-sensitizing gradients at a b-
value of 1,000 s/mm2. Particular care was taken to restrain
the subject’s movements with cushions and adhesive med-
ical tape. Moreover, before further processing, we visually
check the images to exclude all scans with artifacts, largely
caused by subject motion.

Data Pre-Processing

Diffusion images were first converted from DICOM to
NifTI format by using the script dcm2nii from the MRI-
cron1 tool. The FMRIB’s v5.0 (Oxford Centre for Functional
MRI of the Brain2) Diffusion Toolbox (FDT) was used for
correcting eddy current and motion distortion. The non-
diffusion-weighted images, that is, the first volume image
used as reference in DTI data, were skull stripped using
the FMRIB’s brain extraction tool (BET)3 and used to mask
all diffusion-weighted images [Smith, 2002]. A diffusion-
tensor model was fitted at each voxel using Diffusion
Toolkit, generating besides fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AD) and radial

TABLE I. Patient’s clinical characteristics

Patients Sex Age Onset-symptoms
Disease duration

(months) ALSFRS-R Bulbar score

# 1 F 54 Limb 10 33 12
# 2 M 69 Limb 36 18 8
# 3 F 55 Limb 23 27 9
# 4 M 52 Limb 15 32 12
# 5 F 58 Bulbar 6 19 4
# 6 F 67 Limb 48 33 8
# 7 M 43 Bulbar 5 21 5
# 8 M 67 Bulbar 3 38 8
# 9 M 65 Limb 15 29 9
# 10 F 72 Limb 1 25 9
# 11 M 43 Limb 24 33 9
# 12 M 60 Limb 24 30 9
# 13 F 71 Bulbar 6 21 9
# 14 F 53 Bulbar 9 20 5
# 15 M 62 Limb 12 18 10
# 16 M 58 Limb 6 37 12
# 17 F 48 Limb 24 33 10
# 18 F 59 Limb 9 29 12
# 19 F 76 Limb 63 15 7
# 20 M 67 Bulbar 6 24 8
# 21 F 63 Limb 36 25 9
# 22 F 72 Bulbar 6 34 7
# 23 F 66 Limb 68 34 9
# 24 M 55 Limb 5 35 12
Mean 6 SD 54% Female 60.62 6 9.06 29% Bulbar 19.16 6 18.68 27.62 6 6.81 8.83 6 2.24

ALSFRS-R, amyotrophic lateral sclerosis functional rating scaled revised.

AQ1

1http://www.mccauslandcenter.sc.edu/mricro/mricro/index.html
2www.fmrib.ox.ac.uk/fsl/
3http://www.fmrib.ox. ac.uk/fsl/bet2/index.html
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diffusivity (RD) maps, a raw T2 image with no diffusion
weighting (S0). The script dtiMakeDt6FromFSL from the Mr
Diffusion toolkit4 was used for aligning the T1 image—the
anatomical reference—to the S0 image, obtaining a dt6
MATLAB format file for further analysis, described in the
next section.

Automated Fiber Quantification

The Automated Fiber Quantification (AFQ, version 1.2
on MATLAB R2014b) tool [Yeatman et al., 2012] was used
for reconstructing the CST and for evaluating diffusion
metrics along the tract length. AFQ reconstructs the main
white matter tracts, for both hemispheres, and measures
FA, MD, AD, and RD along their trajectories. AFQ has
been validated against manual tracings in healthy controls
[Yeatman et al., 2012] and applied in several clinical
realms, such as children born preterm [Yeatman et al.,
2012], elderly individuals [Yeatman et al., 2014], autism
disorders [Libero et al., 2015] and major depression [Sac-
chet et al., 2014].

In particular, AFQ uses a three-step procedure to identi-
fy 24 major fiber tracts in an individual’s brain. The proce-
dure is based on a combination of the methods described
by Hua et al. [2008] and Zhang et al. [2008]: (1) whole-
brain fiber tractography, (2) waypoint ROI-based fiber tract
segmentation, and (3) cleaning and refinement of fiber
tracts based on a probabilistic fiber tract atlas. An example
of CST reconstruction has been showed in Figure 1. For
the first step, the whole-brain fiber tractography, AFQ uses
a deterministic streamline-tracing algorithm (STT) [Mori
et al., 1999] with a fourth-order Runge–Kutta path integra-
tion method with 1-mm step size. Voxels with FA greater
than 0.3 are selected for generating a white matter mask
used as a seed. Streamlines are traced bidirectionally along
the principal diffusion axis, until the stopping criteria are
reached (FA< 0.2 or angle between steps> 308) [Yeatman
et al., 2012]. The output of this first step is a whole-brain
tractography that is used in the next step for segmenting
the fiber tracts, using a waypoint ROI-based method
[Wakana et al., 2007]. The pairs of waypoint ROIs define
the fibers that pass through stereotypical locations and
they are drawn on a group-average DTI dataset in MNI
space, which are then non-linearly warped to each partici-
pant’s brain [Friston and Ashburner, 2004]. In the case of
the CST, the first ROI defines the entire cerebral peduncle
in an axial plane at the level of the decussation of the
superior cerebellar peduncle, while the second ROI is
placed in the central sulcus, right after the bifurcation to
the motor and sensory cortex [Wakana et al., 2007].

In the third step, involving the refinement of segmented
fiber tracts, each candidate fiber is compared with a fiber
tract probability map created by Hua et al. [2008]. This
fiber tract probability map specifies the probability that a

voxel is associated with a given fiber tract. Thus, estimated
fibers are discarded if their probability of belonging to a
fiber is low. Since the tractography process is noise prone,
fiber tracts are further cleaned by iteratively discarding
outlier fibers that are more than four standard deviations
above the mean fiber length or that deviate more than five
standard deviations from the core of the fiber tract. The
Mahalanobis distance is calculated to estimate the single

Figure 1.

Anatomical sub-division of the corticospinal tract as recon-

structed by AFQ.

4http://white.stanford.edu/newlm/index.php/MrDiffusion
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fiber’s contribution to the core, and it corresponds to the
probability that a given point belongs to the distribution.
Diffusion properties are assessed at each node of each
fiber, on an individual subject basis, using spline interpola-
tion of the diffusion properties: FA, MD, AD, and RD.

Statistical and Machine Learning Analysis

To compare the diffusion properties between ALS and
controls, mean values and standard deviations (6SD) were
plotted [Yeatman et al., 2012] and visually analyzed and
then t-tests were conducted point-wise along the CST for
100 voxels. A permutation-based multiple-comparison cor-
rection was applied to determine a statistically significant
threshold for P-values (P < 0.05) [Nichols and Holmes,
2002].

For exploring the relationship between diffusion proper-
ties in ALS patients and clinical parameters, a Pearson’s
correlation analysis was performed point-wise between
voxel diffusion values and ALSFRS-R/bulbar scores and
between voxel diffusion values and disease duration, with
the aim of quantifying the degree of this relationship.

Although statistical separability is useful, it gives only a
general evaluation of the differences between groups, and
it is not able to help predict the diagnosis as well as the
machine learning approach [Libero et al., 2015]. Further-
more, machine learning techniques offer the possibility to
assess the clinical utility of diffusion parameters. One of
the emerging methods to evaluate the prediction power of
variables (i.e., how well a variable could discriminate
between classes) is Random Forests [Breiman, 2001]. Ran-
dom Forests is a collection or ensemble of Classification
and Regression Trees (CART) [Breiman et al., 1984] trained
on datasets of the same size as training set, called boot-
straps, created from random resampling of the original
training set. Once a tree is constructed, a set of bootstrap
datasets, which does not include any particular record
from the original dataset (out-of-bag examples), is used as
test set. The error rate of the classification on test sets is
the out-of-bag (OOB) estimate of the generalization error.
Breiman [1996] showed by empirical evidence that, for the
bagged classifiers, the OOB error is accurate as using a
test set of the same size as the training set. To classify new
input data, as depicted in Figure 2, each individual CART
tree votes for one class and the forest predicts the class
that has the plurality of votes.

Random Forest follows specific rules for tree growing,
tree combination, self-testing and post-processing, it is
robust to overfitting and it is considered more stable in
the presence of outliers and in very high dimensional
parameter spaces than other machine learning algorithms
[Caruana and Niculescu-Mizil, 2006; Menze et al., 2009].
The concept of variable importance is an implicit feature
selection performed by Random Forest with a random
subspace methodology, and it is assessed by the Gini
impurity criterion index [Ceriani and Verme, 2012]. The

Gini index is a measure of prediction power of variables
in regression or classification, based on the principle of
impurity reduction [Strobl et al., 2007]; it is non-
parametric and, therefore, does not rely on data belonging
to a particular type of distribution. The Gini index is calcu-
lated as follows:

Gini Dð Þ512
Xn

j51

pj

� �2
(1)

where D is a dataset with n classes and pj is the relative
frequency of class j in D. If a dataset D, with size N and n
classes, is split into two subsets D1 and D2 with sizes N1

and N2, the Gini index is defined as:

Ginisplit Dð Þ5 N1

N
Gini D1ð Þ1 N2

N
Gini D2ð Þ (2)

For splitting a node, the attribute value that provides the
smallest Ginisplit(D) is chosen. A low Gini (i.e., a greater
decrease in Gini) means that a particular predictor variable
plays a greater role in partitioning the data into the
defined classes.

In this study, the analyses were conducted by using R lan-
guage (version 3.1.2) and the Random Forest package [Liaw
and Wiener, 2002]. The dataset contained the CST voxel values
of each subject, for each diffusion metric (FA, MD, AD, and
RD). The left and right CST were kept separated in order to
investigate any asymmetry and neither age nor sex were
added as features owing to the almost perfect match of the
three groups. In particular, this dataset has 48 rows (subjects),
one diagnosis column—ALS or CTRL (healthy control)—and
800 numerical columns, that is, values of 200 voxels for each
metric, 100 for each hemisphere. After a data cleaning—for
removing columns with missing values (19)—the dimension
of the feature space was 781. A binary classifier was then
trained by Random Forest on this set, with 10,000 trees in the
forest (ntree) and a recommended value for the number of var-
iables considered at each split of mtry5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of features

p

[Di�az-Uriarte & Alvarez, 2006], where number of features 5 781
(after the data cleaning) and mtry 5 27. Voxels were then
ranked according to their Mean Decrease Gini and all voxels
with a mean decrease gini� 0.1 were selected and extracted
for creating a new training set with the most important voxels
only. This cutoff was selected so to construct a new classifier
with the lowest OOB error. The accuracy of the new classifier
was evaluated by the 5-fold cross validation approach, which
estimates the performance by randomly dividing for five
times the set into five folds, where four folds are used for
training and the remaining one for testing.

RESULTS

Univariate Tract-Profile Analysis

Figure 3 showed comparisons of diffusion parameters
between ALS patients and controls for the CST profile. We
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found significant differences, surviving corrections for mul-
tiple comparisons, in the FA, MD, and RD metrics. The high-
est differences were detected using FA and RD metrics
where DTI values in some parts of CST were not overlap-
ping between groups (Fig. 3a,d). Indeed, ALS patients
showed significant bilateral FA reduction and RD increase
in the cerebral peduncle, posterior limb of internal capsule,

corona radiata, and the primary motor cortex with respect
to controls. Otherwise, MD and AD measurements showed
small regions of differences (Fig. 3b,c). Considering the for-
mer, we depicted significant differences only in the right
cerebral peduncle, whereas analysis of AD revealed a very
restricted—but not statistically significant—pattern of dif-
ference in the right primary motor cortex.

Figure 2.

Illustration of the multivariate analysis applied in this study. (a)

The dataset composed by all the corticospinal (CST) DTI voxel

values of each subject, labeled by diagnosis, is used for training a

forest of binary decision trees. Each voxel is labeled by side [left

(L) or right (R)], followed by the related diffusion metric (FA,

MD, AD, and RD) and its number (from 1 to 100). (b) Each tree

is trained on a random subsample of the dataset (bootstrap). At

each node a random voxel is chosen as a “splitter variable,”

which attempts to separate ALS patients from healthy controls

(CTRL). The more often a voxel is chosen as a splitter variable,

the higher its “variable importance,” that is, the lower its Gini

index. (c) Each tree of the forest gets a vote to predict new

subjects. In particular, each new subject traverses each tree until

it reaches a terminal node, where the class is predicted as ALS

or CTRL.
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Figure 3.

DTI-related profiles of the CST in ALS patients compared to

controls. Plots of mean values are reported voxel by voxels for

each group (patients in blue and controls in orange). Dotted

lines 61 SD represent the left and right CST. The x-axis repre-

sents the voxel location (from 1 to 100) and the y-axis reports

the subjects’ group mean values of (a) Fractional Anisotropy, (b)

Mean Diffusivity, (c) Axial Diffusivity and (d) Radial Diffusivity. T-

test statistics are plotted using a 3D rendering derived from the

AFQ software. The results were thresholded by a conventional

criterion for correction for multiple comparisons, which implied

an appropriate threshold of significance at p-level P< 3e-04. The

3D representation (glass effect) of the tract is added to the plot

background so that each location reported on the x-axis corre-

sponds to the same location in the 3D view. In the middle part

of the figure, the same 3D representation is reported for the

left and right tract where the P-values are associated to colors

of a heat map (statistically significant differences are displayed in

blue). Abbreviations: L, left; R, right; CST, corticospinal; FA, frac-

tional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD,

radial diffusivity.



Figure 4.

The 3D representations of correlation coefficients between DTI

metrics along the CST and ALSFRS-R scores (left side), bulbar

scores (middle) and disease duration (right side) in ALS patients.

The color maps report the adjusted thresholds (P< 0.05) for

multiple comparisons. Significant negative correlations are

colored in blue, whereas positive correlations are in red. Over-

all, the only significant relationship was detected between bulbar

scores and Axial diffusivity values within the cerebral peduncle.

Abbreviations: L, left; R, right; CST, corticospinal.



Correlation Analysis

We performed correlation analyses between DTI metrics
and disease severity/duration scales to evaluate the clini-
cal relevance of the detected microstructural changes in
the CST (Fig. 4). We found non-uniform and weak rela-
tionships. Indeed, none of the correlation coefficients
reached the statistically significant threshold for multiple
comparisons, expect for bulbar scores. Indeed, increasing
of disease severity correlated with a reduction of micro-
structural integrity (as measured by AD values) within the
right cerebral peduncle (Fig. 4).

Machine Learning Applied on Tract Profile

Random Forest classifier, trained on all the features,
showed an OOB error of 25% and the confusion matrix of
the classification of the training set is reported in Table II.

After the feature selection, the classifier trained on the most
important voxels (mean decrease gini� 0.1), showed an OOB
error of 16.67% (Table II). The 5-fold cross validation revealed a
mean accuracy of 80%, with a range between 75% and 87.5%.

The analysis of the variable importance, as extracted from
the classifier trained on all voxels, showed that voxels
influencing the classification of ALS with respect to CTRL
were localized mainly in tracts along the cerebral peduncle
until the corona radiata in the FA and RD metrics (Fig. 5).
The MD-related measurements of the internal capsule in the
right tract presented one significant voxel contributing to
ALS classification. Furthermore, no AD voxels resulted to
have a significant role in the class prediction, as it could be
seen in the plot of the first fifty voxels on the left of Figure 5.

DISCUSSION

In this work, we investigated, for the first time, the
entire profile of the CST to better define the neurodegener-
ative processes underlying ALS. We used a double
approach moving from univariate to multivariate statistical
analyses. At a group level, the most relevant findings were
the bilateral FA reduction and RD increase mostly

localized in the cerebral peduncle, posterior limb of the
internal capsule, and primary motor cortex. Taking into
account all DTI measures within the CST, a machine
learning algorithm (Random Forest) was able to perform
an individual classification of ALS from controls with a
mean accuracy of 80% (min 75%, max 87.5%), identifying
as biomarkers of this optimal discrimination DTI measures
extracted from the cerebral peduncle to the corona radiata.

The CST is recognized as the main pathological site of
ALS in the central nervous system. In vivo evaluation of
this neural sign has consistently been reported by means
of DTI measures [Li et al., 2012]. Indeed, the same bilateral
tendency of FA to decrease was found at the internal cap-
sule, cerebral peduncle, pons and pyramids by Toosy et al.
[2003]; from the internal capsule to the pyramids by Cosot-
tini et al. [2005]; and in the whole tract by Ciccarelli et al.
[2006], Van der Graaff et al. [2011], Wong et al. [2007], and
Grapperon et al. [2014]. Our results about the tendency for
MD to increase in the right cerebral peduncle matched
those observed by Metwalli et al. [2010]. Again, Cirillo
et al. [2012] and Grapperon et al. [2014] also consistently
reported the lack of significant AD-related pathological
changes in the white matter of ALS patients. Finally, the
tract profile approach proposed in this study highlighted
the involvement of an additional DTI metric, which gener-
ally receives lesser consideration in neuroimaging studies:
Radial Diffusivity. Overall, AD and RD are direct mea-
sures that represent, respectively, the diffusion in parallel
and perpendicular directions to the tract, providing more
specific neurobiological information with respect to FA or
MD. A decrease in AD has been reported in both rodents
and humans with axonal damage associated with axonal
swelling and fragmentation [Harsan et al., 2006; Sun et al,
2006], whereas the degree of myelination as well as the
changes in the axonal diameters or density are inversely
correlated with RD [Alexander et al., 2007]. In our study
the absence of differences between groups with AD
together with the increase of RD could be explained by
the so-called pseudo-normalization of AD that happens in
acute stages when the axon and myelin debris are
removed [Mac Donald et al., 2007], which is when a

TABLE II. Performance of Random Forest classifiers, trained on all voxels (without feature selection) and on the

most important voxels (with feature selection, mean decrease gini� 0.1)

RF classifier OOB error
Confusion matrix

[Training set]

Without feature selection 25% Reference
Prediction ALS CTRL Class error
ALS 19 5 0.208
CTRL 7 17 0.291

With feature selection 16.67% Reference
Prediction ALS CTRL Class error
ALS 22 2 0.083
CTRL 6 18 0.25

Abbreviations: RF, random forest; OOB, out-of-bag.
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Figure 5.

Multivariate Classification results for ALS versus controls. Ran-

dom Forest classifier, trained on the most important (mean

decrease gini� 0.1) voxel DTI metrics of the CST, showed a

good performance (mean accuracy: 80%) in discriminating ALS

from controls. On the left side, we reported the variable impor-

tance plot, which presented the first 50 DTI-related features

(voxels) on the y-axis, and their relevance for class detection on

the x-axis, ordered top-to-bottom as most to least important.

On the right side, we plotted the same importance values, but

for all voxels of each diffusion metrics, on a representative 3D

map. In blue those voxels that have a mean decrease gini� 0.1

on which the classifier was trained. Abbreviations: L, left; R,

right; CST, corticospinal; FA, fractional anisotropy; MD, mean dif-

fusivity; AD, axial diffusivity; RD, radial diffusivity. The number of

feature corresponds to the location of the voxel along the tract.



Wallerian degeneration is present [Pierpaoli et al., 2001].
This explanation is coherent with the clinical characteris-
tics of our ALS cohort (high disease duration and modest
motor impairment). Thus, in this scenario, a specific abnor-
mal RD increase could represent a myelin injury with axo-
nal loss, as proposed by Fischer et al. [2004].

Moving from a pathophysiological investigation to an
individual characterization, our machine learning algorithm
reached an optimal accuracy level for disease state classifica-
tion. Classification analysis applied on neuroimaging data
have been sparsely employed in the ALS realm. Welsh et al.
[2013] reached modest results (accuracy of 71.5%) using
resting-state time-series data for training a Support Vector
Machine classifier. Otherwise, a high level of accuracy in
classifying ALS patients from controls was only reached by
combining DTI with other MRI metrics. Indeed, Filippini
et al. [2010] and Foerster et al. [2013] obtained good results
by adding whole-brain voxel-based volumetric analysis
(accuracy 90%) or spectroscopy quantification in the motor
cortex (area under the curve, AUC 75%). Taking into
account this latter evidence, it should bear in mind that we
reached optimal performance only by using DTI informa-
tion within one specific white matter pathway.

Before drawing conclusions, some important limitations
need to be discussed. First, clinically-related parameters are
not strictly connected with microstructural changes along
the CST. As already discussed by Bede and Hardiman
[2014] and Verstraete et al. [2015], correlation between imag-
ing parameters (mainly DTI) and clinical metrics has far
been inconsistent across studies in ALS population [Cosot-
tini et al., 2005; Ellis et al., 1999; Graham et al., 2004; Hong
et al., 2004; Metwalli et al., 2010; Sage et al., 2007; Toosy
et al., 2003]. As concerns ALSFRS-R score, one proposed
explanation is that this evaluation is heavily dependent on
lower motor neuron degeneration, which is not captured by
the current imaging techniques. To overcome this limitation,
in this study we tried to evaluate the different impact of clin-
ical severity restricted to bulbar impairment (bulbar score
from ALSFR-R scale), reporting a slight relationship
between bulbar scores and some DTI measures (i.e., AD)
within the cerebral peduncle. Second, longitudinal studies
need to be performed to monitor the spread of pathology
along the CST in ALS patients [Van der Graaff et al., 2011].
Finally, AFQ provides a framework for combining quantita-
tive imaging data from multiple modalities [Yeatman et al.,
2012]. While diffusion imaging is quantitative, diffusion
properties are not biologically specific. Future work using
quantitative T1 and Proton Density (PD) in combination
with DWI-tractography based fiber tract segmentation will
elucidate the precise biological underpinnings of neural
injuries in ALS patients.

CONCLUSIONS

We are interested in evaluating the potential of a new
advanced imaging method to serve as a biomarker in ALS.

The tract profile technique described in this study allows
us to both better describe pathophysiological abnormalities
characterizing ALS patients and evaluate the robustness of
a machine learning algorithm applied on these specific
sets of data. We retain that the neuroimaging approach
described in this study may open new possibilities for
developing multivariate neuroimaging outcomes readily
transferable to the clinical practice of ALS. Indeed, there is
an urgent need to identify biomarkers, which may be used
for helping and improving early diagnosis but that it is
hoped will improve and create therapeutic options for
ALS patients and ultimately help in the treatment of these
patients. Moreover, since previous univariate neuroimag-
ing methods have partially failed in providing definitive
and clinically useful biomarkers, machine learning
approaches must be employed also for improving individ-
ual differential diagnosis of ALS phenotypes with respect
to other motor neuron disease disorders (i.e., PMA, PLS),
as well as, ALS-mimicking syndromes (i.e., FTD).
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