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Abstract

Tractography based on diffusion weighted imaging (DWI) data is a method for identifying the major white matter fascicles
(tracts) in the living human brain. The health of these tracts is an important factor underlying many cognitive and
neurological disorders. In vivo, tissue properties may vary systematically along each tract for several reasons: different
populations of axons enter and exit the tract, and disease can strike at local positions within the tract. Hence quantifying
and understanding diffusion measures along each fiber tract (Tract Profile) may reveal new insights into white matter
development, function, and disease that are not obvious from mean measures of that tract. We demonstrate several novel
findings related to Tract Profiles in the brains of typically developing children and children at risk for white matter injury
secondary to preterm birth. First, fractional anisotropy (FA) values vary substantially within a tract but the Tract FA Profile is
consistent across subjects. Thus, Tract Profiles contain far more information than mean diffusion measures. Second,
developmental changes in FA occur at specific positions within the Tract Profile, rather than along the entire tract. Third,
Tract Profiles can be used to compare white matter properties of individual patients to standardized Tract Profiles of a
healthy population to elucidate unique features of that patient’s clinical condition. Fourth, Tract Profiles can be used to
evaluate the association between white matter properties and behavioral outcomes. Specifically, in the preterm group
reading ability is positively correlated with FA measured at specific locations on the left arcuate and left superior
longitudinal fasciculus and the magnitude of the correlation varies significantly along the Tract Profiles. We introduce open
source software for automated fiber-tract quantification (AFQ) that measures Tract Profiles of MRI parameters for 18 white
matter tracts. With further validation, AFQ Tract Profiles have potential for informing clinical management and decision-
making.
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Introduction

A major goal of clinical neuroimaging research is to make

measurements that can accurately diagnose or characterize clinical

conditions and predict clinical outcomes. Achieving the goal

requires an efficient procedure to (1) identify equivalent brain

structures in healthy controls and individual patients and (2)

measure biological properties of the structures that are sensitive to

clinical abnormalities. In this report, we introduce an automated

method for identifying specific white matter fascicles from

diffusion weighted imaging data and quantifying biological

properties along the length of these fascicles.

Diffusion weighted imaging (DWI) is a magnetic resonance

imaging (MRI) method that measures water diffusion in brain

tissue in multiple directions. Water diffusion probes tissue

organization at the micrometer scale within an MRI voxel. In

regions of cerebral spinal fluid (CSF), the mean displacement of

water molecules due to diffusion is similar and relatively large in all

directions (isotropic). In gray matter, cell membranes hinder the

movement of water molecules, and therefore the mean displace-

ment of water molecules is smaller but still isotropic. In white

matter, myelinated axons are directionally coherent causing

anisotropic diffusion that is much smaller perpendicular to the

axons than it is parallel to the axons [1–3] for review see [4].

The mean rate of water diffusion is measured by the apparent

diffusion coefficient (ADC). In white matter the ADC is greatest

parallel to the principal orientation of an axon bundle (fascicle/

fiber tract) and is reduced and often approximately constant in all

the directions perpendicular to the principal direction. Summary

measures such as fractional anisotropy (FA) can be derived to infer

how restricted diffusion is perpendicular to the primary orientation

of the fascicle. Diffusion properties are routinely used for group

comparisons between clinical populations and control groups to

infer the neurobiology of the disease.

One approach to the analysis of diffusion-weighted imaging is

voxel-based analysis. This method computes statistics indepen-

dently for the diffusion properties of each voxel within the brain
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image. To assure that the same voxels are compared across

subjects, coregistration algorithms are used to align the brain

images of the subjects to a common coordinate frame. Particularly

for patient populations, voxel-based analysis does not have

sufficient precision at the individual level because the shape of

long-range fiber tracts varies substantially among subjects [5,6].

Coregistration algorithms used in voxel-based analysis do not

accurately align fiber tracts due to variation in tract size and shape

[5]. Methods such as Tract-Based Spatial Statistics (TBSS) that

compute statistics on ‘‘voxel skeletons’’ may be an improvement

over conventional voxel-based analysis. However, like any voxel

based technique, TBSS cannot ensure that any voxel corresponds

to the same tract across participants and there is only modest

agreement between TBSS-based tract definitions and the actual

location of a tract in an individual’s brain [7].

Tractography algorithms use estimates of the principal diffusion

direction (or orientation distribution function) to trace the

continuous trajectory of white matter fascicles through a three-

dimensional brain volume [8,9]. Tractography is widely consid-

ered the most accurate method for identifying the white matter

fascicles in the living human brain, and has been validated in

artificially constructed fiber structures (called phantoms), animals

and humans [10–12]. These algorithms have even proven useful at

the individual level for identifying the location of essential fiber

bundles during neurosurgery [13–16].

One limitation of tractography for large-scale clinical research

and time-sensitive clinical practice is that the usual methods for

identifying major fascicles are laborious and time consuming.

They typically rely on manually drawing regions of interest (ROIs)

that disambiguate the trajectory of a known fascicle from other

fascicles within the brains of each participant [17,18]. There is

much interest in developing methods that rapidly and reliably

identify and measure fiber tracts in an individual’s brain, and there

has been recent progress in automating tract identification [19].

A second limitation of tractography is that diffusion properties

are typically averaged over the entire length of the white matter

tract. However, diffusion measurements vary along the tract

trajectory [6]. One reason for this variation is the presence of

crossing tracts that lower FA at the tract juncture. Equally

important, axons do not always run the entire length of a fascicle,

and in many cases different neural populations enter and exit at

different points along the fascicle. Hence, averaging along the

entire tract may obscure potentially important information. Mean

diffusion properties for a tract generally change during develop-

ment [20] and there are group differences in a variety of clinical

conditions [4,21,22]. When there is a change in the mean for a

tract, it is possible that the change is reflected throughout the

entire tract or that the change is driven principally by a small

region within the tract [6,23]. Mean measures are not sufficiently

sensitive to classify an individual’s level of development or clinical

outcome. If the key axons arise from a population that passes

through only a portion of the fascicle, then measures that focus just

on that portion will be far more sensitive than averaging across the

length of the fascicle. Ideally an analytic method for clinical

research and practice would capitalize on the precision of

tractography for localizing fiber tracts in individual brains and

simultaneously preserve information about the diffusion measure-

ments at different locations on the tracts. Recent reports have

emphasized the utility of analyzing diffusion properties along the

tract trajectory in healthy brain anatomy [24,25], development

[26], aging [27], and clinical conditions [28–32].

In this paper, we present a framework for quantifying diffusion

measurements at multiple locations along the trajectory of a white

matter tract, creating a ‘‘Tract Profile’’ of diffusion measurements.

To create Tract Profiles reliably and efficiently, we introduce an

algorithm that automatically identifies 18 major white matter

tracts in healthy and diseased brains and makes measurements at

anatomically equivalent locations along their trajectories. We call

the software Automated Fiber Quantification (AFQ), which we

make open source and freely available. The applications in this

paper elucidate the value of Tract Profiles for scientific investiga-

tion, clinical research and practice.

The first aim of this study is to demonstrate the systematic

variation in diffusion properties along the trajectory of 18 fiber

tracts within both hemispheres. For a group of typically developing

children ages 9 through 16, we demonstrate that the Tract FA

Profiles are reliable and consistent.

The second aim is to compare the Tract Diffusion Profiles as a

function of age. We show that Tract FA Profiles change with age,

and that the changes in FA occur at specific locations within each

tract.

The third aim is to compare Tract Diffusion Profiles for

individual patients with normative or standardized Tract Diffusion

Profiles, derived from a healthy age-matched sample. We chose to

focus on children born preterm due to the heterogeneity of white

matter properties and neuro-developmental abnormalities of that

population. Recent research has documented that children born

preterm have diffuse white matter injuries. The cause appears to

be the vulnerability of oligodendrocyte precursors, the cell line that

ultimately produces myelin, between 24 and 32 weeks gestation

[33,34]. We show that Tract Diffusion Profiles identify distinct

abnormalities in individual patients that can be linked to the

patient’s clinical characteristics.

The fourth aim is to use Tract Diffusion Profiles to predict

behavioral outcomes in the preterm sample. Reading impairments

are common in children born preterm and are thought to result

from perinatal white matter injury [33,35–37]. We demonstrate

that in the preterm sample reading proficiency is correlated with

FA values at specific locations within two tracts: the left arcuate

fasciculus and left superior longitudinal fasciculus.

Results

Diffusion properties vary systematically along major
fascicles

The diffusion properties of a tract can be represented with a

vector of measurements sampled at equidistant locations along the

tract. We label the vector of diffusion measurements for a tract as

the ‘‘Tract Diffusion Profile’’.

We used Automated Fiber Quantification (AFQ) software to

generate Tract Diffusion Profiles for a sample of healthy and

typically developing participants ages 9 through 16 years (n = 48)

(see Methods). In this report we focus on FA but other measures

can be examined as well. We found that FA varies systematically

along the trajectory of each white matter fascicle. Figure 1 shows

the Tract FA Profiles for 48 typically developing children on four

tracts in the left and four tracts in the right hemisphere.

Examination of Figure 1 demonstrates that subjects reliably show

decreases and increases in FA at equivalent locations along the

tracts. This variation in FA can be explained by anatomical

features of the tracts: geometric properties of the tract, such as

curvature; partial volume effects with neighboring structures; and

the admixing of crossing, branching, merging or kissing fibers from

other fiber tracts.

Below we discuss the anatomical characteristics of the four tracts

to explain the peaks and valleys in the Tract FA Profiles.

Corticospinal Tract (CST). The CST shows a dramatic

reduction in FA at an equivalent location in all individuals and at

Tract Profiles of White Matter Properties
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that point FA falls to a similar level in each subject. The CST

ascends from the brainstem, paralleling the ventricles to the cortex.

FA for the CST starts off relatively low due to partial voluming in

the brain stem. FA peaks roughly half way between the two

defining ROIs, at the level of the internal capsule. At this location

fibers are coherently oriented inferior-superior. FA then declines

substantially at the level of the centrum-semiovale, a location

where callosal fibers cross medial to lateral through the CST and

superior longitudinal fasciculus (SLF) fibers cross posterior to

anterior through the CST [38].

Uncinate Fasciculus. The uncinate fasciculus shows a single

peak in FA that consistently occurs in the same location in every

subject. From the anterior temporal lobe the uncinate travels in a

posterior-medial direction, curves behind the insula, and continues

in a superior and anterior direction toward the orbitofrontal

cortex. FA for the uncinate fasciculus remains low in the temporal

lobe, through the curved portion of tract, and starts steadily

increasing when it joins up with the external/extreme capsule and

heads anterior towards its frontal lobe end points.

Inferior Fronto-Occipital Fasciculus (IFOF)
The IFOF shows three distinct and consistent peaks and valleys

in its FA profile. The IFOF courses from the occipital lobe through

the external/extreme capsule to the inferior frontal cortex. FA is

high in the occipital and temporal lobes and declines as the tract

heads anterior. The first valley in the Tract FA Profile occurs

where the tract bundles together and enters the external/extreme

capsule. FA remains low through the initial section of the

external/extreme capsule where the tract is thin and intermixed

with neighboring gray matter. FA increases where the IFOF

Figure 1. Tract Fractional Anisotropy (FA) Profiles of four major fascicles. (a) cortico-spinal tract, (b) uncinate fasciculus, (c) inferior fronto-
occipital fasciculus, and (d) corpus callosum. For each tract, a three-dimensional rendering derived from the Automated Fiber tract Quantification
(AFQ) software is shown for a single representative 12-year old female. It indicates the defining Regions of Interest (ROIs) as dotted lines and includes
the core or mean fiber, represented as a 5 mm radius tube color-coded based on the FA value at each point along the tract for that subject. Adjacent
to the rendering, Tract FA Profiles for left and right hemispheres show the FA along the core fiber (y-axis) at each of 100 equidistant points (x-axis)
along the fascicle between the defining ROIs for typically developing children and adolescents age 9 to 16 years old (N = 48). The group mean is
shown as a bold line, colored-coded based on the group mean FA value at that point. Tract FA Profiles show a consistent pattern of peaks and valleys
of FA across individuals.
doi:10.1371/journal.pone.0049790.g001
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merges with the uncinate at the location of the FA peak on the

uncinate. The next FA valleys occur in regions where the tract

again abuts gray matter or curves and increases where the tract

enters regions of thicker white matter where there is less partial

voluming.

Corpus Callosum, Forceps Major and Forceps

Minor. The corpus callosum shows a dramatic two fold

decrease in FA as the fibers traverse away from the mid-sagittal

plane. The forceps major connects homologous regions of the

occipital lobe in each hemisphere and the forceps minor connects

homologous regions of the anterior frontal lobe in each

hemisphere. FA for both callosal segments is high (,0.8) near

the mid-sagittal plane where callosal fibers are tightly bundled

together and coherently organized in the medial-lateral direction.

FA decreases substantially as fibers start diverging toward their

specific cortical destinations. The forceps major shows a sharp FA

decline in homologous regions of the left and right hemisphere.

This FA valley occurs where callosal projections merge with

longitudinally oriented projections to the occipital lobe. FA then

increases slightly as the callosal fibers align with these longitudinal

projections destined for occipital cortex.

Standardized tract diffusion profiles. Given the consis-

tency of Tract FA Profiles across the healthy and typically

developing children, it is possible to create a standardized Tract

FA Profile for each tract that characterizes the mean and variation

of the measure at each point along the tract. Figure 2 shows the

mean Tract FA Profiles and the 10th and 90th percentiles for 8 left

hemisphere tracts and 2 callosal segments identified by AFQ for

the sample of healthy typically developing children. The profiles of

right hemisphere pathways were similar. Creating normative

Tract Profiles allows for point-wise quantification of tract

abnormalities in clinical populations or at-risk individuals that

have been scanned with the same MRI sequence.

Developmental changes in Tract FA Profiles
During development FA increases. The reasons are likely to do

with the increase in myelination and directional coherence of the

axons. It is known that the rate of maturation varies between tracts

[20]; however, it is not known if all locations within a tract change

at comparable rates.

To determine whether FA develops throughout the entire tract

or only at selected locations, we used a median split to divide the

sample of healthy controls into a group of 24 younger subjects

(mean age = 9.8, sd = 1.4) and a group of 24 older subjects (mean

age = 14.3, sd = 1.1). We used AFQ to compare Tract FA Profiles

in the younger and older groups. Figure 3 shows the mean Tract

FA Profiles for the younger and older children with a +/21

standard error of the mean confidence interval computed at each

location along the tract.

We found that the Tract FA Profiles had a similar shape for the

younger and older children, confirming that the anatomical

features that cause variation in FA are in place by age 9 years.

However, Tract FA Profiles revealed that changes in FA were not

uniform along the tracts. The older children had higher FA than

the younger children at specific locations on the Tract Profiles of

15 out of the 18 tracts. The locations of FA development and the

locations of FA stability were consistent across the right and left

hemisphere. These results add substantial specificity to previous

reports of increasing FA as a function of age [20]. While voxel-

based analyses typically find varying levels of statistical significance

across the brain, voxel-based analysis cannot be used to compare

rates of development at different locations on a tract because of

substantial spatial variation in statistical power over the brain

volume [39] and TBSS voxel skeleton [40].

Below we discuss the anatomical locations of FA development of

four tracts in each hemisphere.

Arcuate Fasciculus. Mean FA for the entire left and right

arcuate was not significantly different between older and younger

children. However, FA was significantly higher in the older

children at a specific location medial to the central sulcus (marked

by an arrow in figure 3a) in the left hemisphere (FA older

children = 0.51, FA younger children = 0.46, t = 3.64, p,0.05

corrected) and approached significance at the same location in the

right hemisphere (FA older children = 0.48, FA younger chil-

dren = 0.44, t = 2.13, p = 0.04 uncorrected). At this location,

anterior to the principal arc of the tract, fibers are straight and

coherently bundled together. We think that this location represents

the purest measure of white matter microstructure for the arcuate,

uncontaminated by curving and crossing fibers. The increased

sensitivity of the Tract FA Profile to developmental change

compared to a single tract summary measure illustrates the

sensitivity of this methodology to group differences.

IFOF. The mean FA for the entire IFOF was greater for older

versus younger children; the magnitude of change was small (Left

ILF: younger = 0.46, older = 0.48, t = 2.65, p,0.05; Right ILF:

younger = 0.46, older = 0.47, t = 0.72, p = n.s.). However, there

was a substantial FA increase for the older subjects localized to the

frontal lobe portion of the tract (Left IFOF FA: older = 0.50,

younger = 0.42, t = 5.72, p,0.05 corrected, Right IFOF FA:

older = 0.50, younger = 0.42, t = 4.56, p,0.05 corrected. Location

is marked by an arrow in Figure 3b). These findings are consistent

with other data that suggests that frontal lobe white matter

develops later than occipital and temporal lobe white matter

[41,42].

Cingulum. For both the left and the right cingulum, the

posterior third of the tract had equivalent FA levels for older and

younger children. Differences emerge, and grow in magnitude

toward the anterior portions of the tract in both hemispheres (Left

cingulum FA: older = 0.49, younger = 0.41, t = 4.15, p,0.05

corrected; Right cingulum FA: older = 0.41, younger = 0.34,

t = 3.11, p,0.05 corrected. Location is marked by an arrow in

Figure 3c). These findings are also consistent with other data

suggesting that white matter of the frontal lobe develops later than

posterior regions.

Corpus Callosum. There was not significant FA develop-

ment in the mid sagittal plane. There was also no developmental

change in the forceps major. For the forceps minor FA was

significantly higher in the anterior frontal lobe portion of the tract

in the left hemisphere (older = 0.55, younger = 0.50, t = 3.48,

p,0.05 corrected) and approached significance in the right

hemisphere (older = 0.54, younger = 0.50, t = 2.43, p = 0.019

uncorrected).

Detection of neurodevelopmental abnormalities from
preterm birth

Children born preterm are at substantial risk of white matter

injury. However in this population the mechanisms of injury are

variable. Studies of preterm infants report heterogeneous out-

comes including diffuse abnormalities in the myelination process

due to damage to oligodendrocyte precursor cells, focal necrotic

lesions due to severe hypoxic/ischemic insult, and typical white

matter development despite neonatal complications [35].

In a previous analysis using an alternate method for analyzing

white matter properties, as a group the children born preterm in

this sample did not show reductions in FA compared to the

controls [43]. These findings are consistent with other reports in

the literature and indicate the heterogeneity of brain development

after preterm birth [44].

Tract Profiles of White Matter Properties
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We applied AFQ to generate Tract FA Profiles for individual

children in the preterm group and to quantify tissue properties

along white matter fiber tracts within these individuals relative to

reference norms. Figure 4 shows Tract FA Profiles for the forceps

major, forceps minor and CST for children born preterm (n = 26)

relative to the control group norms. We found wide variation of

FA within the group of children born preterm in relation to the

norms. Some of the children born preterm have substantial

reductions in FA, some have normal FA and some have substantial

increases in FA relative to the norms.

These data demonstrate that there is not a canonical

neurodevelopmental abnormality that characterizes the whole

sample of children born preterm. However when we use a

threshold for values outside the typical range (either 10th and 90th

or 5th and 95th percentiles) to identify outliers with abnormal Tract

Profiles, significantly more patients are identified as outliers than

are controls (X2 (1,N = 75) = 5.13, p,0.05). 40% of the patients

compare to 16% of controls are identified as outliers on one or

more tracts when the 5th and 95th percentile bands are used to

define abnormal Tract Profiles.

Evaluating individual Tract FA Profiles we identified two

patients with severe abnormalities. Patient #1, shown as a solid

red line in Figure 4, has extremely low FA for the forceps major

but has extremely high FA along the superior portion of the left

Figure 2. Standardized Tract FA Profiles for 10 tracts in typically developing children and adolescents. In the center, two sagittal T1
images show renderings of 10 major tracts, each with a different color, including the two defining regions of interest (ROIs), marked by dotted lines.
Around those images are the Standardized Tract FA Profiles, color-coded to match the tracts in the central image, with FA values plotted for 100
equidistant locations between the two defining ROIs. The black line in each plot represents the mean FA for each point. The dark gray band shows
25th and 75th percentiles and the light gray band shows the boundaries of the 10th and 90th percentiles. (SLF = Superior Longitudinal Fasciculus,
ILF = Inferior Longitudinal Fasciculus, IFOF = Inferior Fronto-Occipital Fasciculus).
doi:10.1371/journal.pone.0049790.g002
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and right CST. This patient has severe ventricular dilation. Patient

#2, shown as a solid yellow line, has reduced FA for the left CST

but normal FA for the right CST. This patient has cerebral palsy

that is more severe for the right side of the body. We discuss these

patients in detail below.

Patient 1: Ventricular Dilatation. Patient 1 was a 14-year-

old male born prematurely at 27 weeks gestational age with non-

shunted ventricular dilatation secondary to grade III–IV intra-

ventricular hemorrhage. Figure 5 shows a T1 weighted anatomical

image of patient #1 and three fiber tracts identified in the patient

with AFQ; the right uncinate fasciculus, the right cortico-spinal

tract and the forceps major of the corpus callosum. The child

showed normal diffusion properties along the uncinate fasciculus,

a tract that is spatially separated from the ventricles. The child has

thinning of the corpus callosum and low FA along the full

trajectory of the forceps major. This finding is consistent with

other studies of children born prematurely. To test whether the

reduced FA could be accounted for by partial voluming with CSF

in this patient with enlarged ventricles we examined the patient’s

Tract Mean Diffusivity (MD) Profile. MD values were elevated at

node 20, but otherwise MD values were within the normal range

indicating that there was not a substantial change in the water

content of forceps major voxels. Hence, we demonstrated that

partial voluming with CSF could not explain the FA reduction.

By contrast, the left cortical-spinal tract had substantially

increased FA throughout its trajectory compare to the control

group. We interpret this increased FA as due to two major factors.

The first relates to the tract itself. Ventricular dilatation may lead

to stretching, displacement, and resulting increased coherence of

the axons in the CST leading to increased FA [32]. The second

relates to crossing fibers. A distinctive feature of the left and right

CST Tract FA Profiles of this patient is that FA increases near the

superior portion where FA decreases for the healthy controls. In

the typical subjects, this decrease in FA is the result of crossing

fibers from the corpus callosum. In the patient, the amount of

crossing fibers is most likely reduced, as indicated by the low

callosal FA.

This case demonstrates that AFQ could be applied to a patient

with extremely abnormal brain morphology. Tract Profiles

provide novel insight into the neurobiology of this patient’s white

matter injury.

Patient 2: Cerebral Palsy. Patient 2 was a 12-year-old

female born prematurely at 34 weeks gestational age by Cesarean

section. At 28 months of age she was diagnosed with mild spastic

diplegic cerebral palsy that was more severe on the right side of the

body. She was treated with physical and occupational therapy,

splinting, and eventually a trial of botulinum toxin injections. T1

weighted anatomical images and the cortico-spinal tract are shown

for this child in Figure 6. There was a substantial reduction in FA

along the portion of the CST where there are typically no crossing

fibers. However in the centrum semioval where crossing fibers

reduce FA in healthy control subjects, the patients FA values were

within the normal range.

This case demonstrates the sensitivity of AFQ to microstructural

differences in a patient without extremely abnormal brain

morphology.

Figure 3. Development of Tract FA Profiles between childhood and adolescence. Standardized Tract FA Profiles for three left and right
hemisphere tracts and the posterior and anterior segments of the corpus callosum in younger participants (n = 24, mean age 9.8 years sd = 1.4),
represented in blue, and older typically developing children (n = 24, mean age 14.3 years sd = 1.1), represented in red. Renderings of each tract
indicate the defining regions of interest. Each plot shows the mean Tract FA Profile +/21 standard error of the mean confidence interval for each
group. Differences in FA across groups occur at specific locations on the Tract FA Profiles. Arrows indicate on the area of the Tract FA Profile showing
the greatest group difference (discussed in main text).
doi:10.1371/journal.pone.0049790.g003
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Prediction of reading outcomes in children born preterm
We now demonstrate that AFQ can be used to create

behavioral as well as structural Tract Profiles. Most studies that

seek to establish the degree of correlation between behavioral

function and tissue properties of tracts use the mean value for the

entire tract in the calculations. We generate ‘‘Behavioral Tract

Profiles’’ by calculating the degree of correlation between

behavioral measures and tissue properties at multiple points along

the tract. We anticipate that the degree of correlation will vary

along the tract.

Reading deficits are common in children born preterm [36]. It

is thought that they are related to white matter abnormalities

secondary to preterm birth [33–35,45]. We used AFQ to create

Behavioral Tract Profiles to evaluate the correlation between

localized white matter structure and reading skills in the sample of

children born preterm (n = 26) and to compare these correlations

to the those of a sample of typically developing children (n = 18).

Single word reading is thought to utilize an interconnected

network of brain regions, including the superior temporal gyrus,

inferior parietal lobe, and the inferior frontal gyrus. Two main

pathways connecting these regions are the arcuate fasciculus and

superior longitudinal fasciculus. Previous studies of typically

developing children have reported a negative correlation between

diffusion properties in the left arcuate fasciculus and phonological

processing skills, which are considered essential for reading

development [6]. The involvement the arcuate fasciculus in

phonological processing is also supported by the analysis of

neurological cases [46] and intra-operative micro-stimulation [47].

We contrast the correlations computed for tract average FA versus

correlations computed along the Tract FA Profiles for the left

arcuate and left SLF in full term and preterm children.

We first used AFQ first to replicate the correlation between

reading skills and tract mean diffusion properties of the left arcuate

in typically developing full-term children. For the typically

developing children we found a significant negative correlation

between single word reading skills and tract mean FA of the left

arcuate fasciculus (r = 20.40, p = 0.05, one-tailed). The direction

and magnitude of this correlation was very similar to the direction

and magnitude of the correlation between phonological processing

skills and left arcuate fasciculus FA in a previous study of typically

developing children (Yeatman et al. 2011). We also found a

negative correlation between single word reading skills and tract

mean FA of the left SLF (r = 20.30, p = 0.10, one-tailed), a trend

that did not reach statistical significance. For the preterm children,

we found a significant positive correlation between single word

reading skills and tract mean FA of the left arcuate (r = 0.44,

p,0.05, 95% CI = 0.22 to 0.64) and the left SLF (r = 0.41,

p,0.05, 95% CI = 0.10 to 0.66).

Behavioral Tract Profiles demonstrated that the reading-FA

correlations varied significantly along the left arcuate and left SLF.

Figure 7 uses a color map to represent the variation in the

correlation coefficient at the different locations along the trajectory

of the left arcuate and left SLF in children born preterm. The

Figure 4. Individual Tract FA Profiles for children born preterm compare to Standardized Tract FA Profiles for typically developing
children. For four tracts, Tract FA profiles of individual preterm patients are plotted as a dashed line. Each patient is a different color. Notice the
substantial variation in Tract FA profiles, particularly in the callosum forceps major and left corticospinal tract. Two patients (red and yellow solid lines)
have unusual Tract FA profiles that correspond to clinical findings (discussed in main text).
doi:10.1371/journal.pone.0049790.g004
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degree of correlation was not uniform. For the left SLF the

correlation with basic reading skills was significantly higher for a

central portion of the tract approximately 1 cm in length (r = 0.55,

p,0.05 corrected, 95% CI = 0.24 to 0.74) than in distal portions

of the tract. The correlations ranged from r = 0.1 to r = 0.3 in the

regions where fibers branch away from the central section and

approached r = 0 near the tract endpoints. The location of highest

correlation between arcuate fasciculus FA and single word reading

occurred at the same anatomical location as the location of

developmental change. This is the location at which the tract is

coherently bundled together and does not curve or branch. All the

correlations remained significant after controlling for age.

These analyses confirm that the AFQ segmentation can detect

previously reported brain-behavior correlations within a sample of

typically developing children and detect novel correlations in a

sample of patients born preterm. Examining correlations at

multiple locations along the trajectory of a fascicle provides

superior sensitivity to brain-behavior correlations than does

summary measurements. This analysis provides a framework for

predicting an individual patient’s behavioral outcome based on

their deviation from typical diffusion measurements.

Discussion

We developed and evaluated a novel methodology for

automatically identifying fiber tracts and quantifying tissue

properties at multiple locations along their trajectories. The

resulting Tract Profiles elucidate fundamental properties of white

matter tracts in healthy and diseased brains. First, FA values vary

substantially within a tract but the shape of the Tract FA Profile is

consistent across subjects. Hence the Tract Profile contains

information beyond the tract mean. The consistency of Tract

Profiles demonstrates the precision of this method for quantifying

tissue properties at specific locations on a fiber tract in an

individual’s brain. Second, Tract Profiles localize developmental

changes in FA to specific regions of fiber tracts. FA development is

not uniform along the full tract. Third, Tract Profiles can be used

to compare individual patients with healthy population norms to

elucidate unique features of that patient’s clinical condition.

Finally, Behavioral Tract Profiles predict variation in behavioral

outcomes in children born preterm. FA measurements sampled

from specific locations on the left arcuate fasciculus and left

superior longitudinal fasciculus correlate with reading proficiency

in the preterm children.

Other methods for parameterizing MRI measurements along

the trajectory of white matter tracts have been used to study

healthy brain anatomy [24,25], development [26], aging [27], and

clinical conditions including epilepsy [28], premature birth

[29,32], neuromyelitis optica [30] and fetal alcohol syndrome

[31]. In each of these studies Tract Profiles elucidate white matter

characteristics obscured by analysis of tract mean measurements.

For example Davis et al. demonstrate that aging does not affect

fiber tract diffusion properties uniformly; age related white matter

deficits increase gradually, from posterior to anterior, along the

length of the uncinate fasciculus and cingulum bundle [27].

Berman et al. demonstrate that the decline in corticospinal tract

FA at the level of the centrum semiovale is present in infants at 42

weeks of gestational age but is not present in premature infants at

29 weeks of gestational age [29]. Concha et al. demonstrate that

diffusion abnormalities caused by epilepsy are restricted to the

temporal lobe portion of fiber tracts though abnormalities in the

temporal lobe portion of the arcuate fasciculus are not detected in

Figure 5. T1 images, tractography results and Tract FA Profiles for Patient 1, a child with ventricular dilatation. In the plots, the black
line represents the mean FA for typically developing children at 100 points along the tract and light gray region represents the boundaries for the
10th to 90th percentile. The red line represents the patient’s FA along the tract. The patient has variable FA in the uncinate, increased FA along the
corticospinal tract and decreased FA in the corpus callosum forceps major.
doi:10.1371/journal.pone.0049790.g005
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tract mean measurements [28]. O’Donnell et al. demonstrate that

laterality measurements are not uniform along tracts; in this case

the arcuate fasciculus is significantly left lateralized at only two

specific locations on the tract [25].

Our contribution includes a complete and automated data

processing pipeline that runs from raw DTI data to fiber tract

identification and Tract Profile quantification for 18 major fiber

tracts. In addition we document the white matter features that

contribute to the shape of each Tract Profile and propose a

framework for applying these methods to the quantification of

abnormalities in individual patients. Open-source software for the

analysis of Tract Profiles will allow Tract Profiles to be a standard

of the field and provide opportunities to systematically compare

the advantages of each methodology for computing Tract Profiles.

We put the AFQ software in the public domain so that others can

use it and/or modify it for their particular purposes.

Tract Profiles are consistent across subjects
Using AFQ we found that each tract had characteristic peaks

and valleys in its Tract FA Profile and these peaks and valleys are

at the same locations across healthy and typically developing

children (Figure 1 and Figure 2). Many major white matter

fascicles can be thought of as highways with distinct entrances and

exits where populations of axons join, diverge or cross the main

fascicle. Declines in FA indicate locations on the tract with

crossing and branching axons, high tract curvature, or intermixing

of CSF and gray matter within the same voxels that contain the

tract.

Analyzing Tract Profile of diffusion measurements along the

trajectory of the tract provides insight into the tissue properties of

these localized regions. A tract’s profile of FA measurements can

be summarized with the population mean and standard deviation

at each location of the tract so that an individual can be

quantitatively compared to population norms. Changes in FA due

to development or disease may reflect different biological processes

and have different behavioral implications depending on their

location on a tract.

Developmental changes in FA are localized to specific
regions of fiber tracts

AFQ Tract Profiles confirm that FA increases between late

childhood and early adolescence for most major white matter

tracts [20]. We added new information, that FA changes are

localized to specific sub regions of the tract and do not occur along

the entire trajectory of a tract. These sub-regions were consistent

for each tract in the left and right hemisphere. For example in the

frontal lobe portion of the left IFOF, FA was more than 6 standard

errors of the mean higher for older children compare to younger

children whereas the rest of the tract had nearly equivalent FA for

both groups. We think that this large difference reflects

developmental changes within distinct populations of axons that

comprise the fascicles. This theory is consistent with reports of late

maturation of frontal lobe white matter and frontal lobe

dependent cognitive skills [41,42,48]. Voxel-based analyses have

demonstrated a posterior to anterior developmental trajectory

where the timing of development depends on the voxels location

along the anterior-posterior axis of the brain [48]. We show that

this pattern is present at the level of fiber tracts: Not only do

frontal lobe tracts develop later, but the anterior portion of large

tracts develop later than the posterior portions.

An alternative hypothesis is that the rate of myelination varies

along the length of an axon [26,49]. Averaging FA for the whole

tract masks the magnitude and specificity of developmental

change.

Tract Profiles detect neurodevelopmental abnormalities
in individual children born preterm

Using AFQ Tract FA Profiles for the analysis of individual

clinical cases, we found that Tract FA Profiles are sensitive to

white matter abnormalities associated with ventricular dilatation

and cerebral palsy. From a clinical perspective, decisions are made

at the individual level, taking into account the cognitive,

behavioral and neurological characteristics of the patient. It is

therefore essential to establish the sensitivity of diffusion imaging to

changes within the brains of individual patients before considering

applications within the clinic [50]. AFQ Tract Diffusion Profiles

are sensitive to white matter abnormalities within an individual’s

brain and provide quantitative metrics that may aid in clinical

decision-making. However establishing the utility of AFQ within

the clinic will require rigorous testing of the sensitivity and

specificity of these quantitative metrics for specific clinical

conditions.

Localized FA measurements on the arcuate and SLF
predict reading skills

We used Behavioral Tract Profiles to investigate the neurobi-

ology of individual differences in reading skills in healthy and

injured brains. For typically developing children left arcuate

fasciculus FA is negatively correlated with single word reading

skills. This finding is in line with previous reports [6]. For children

born preterm, left arcuate fasciculus FA and left SLF FA are both

Figure 6. T1 images, tractography results and Tract FA Profiles
for Patient 2, a child with cerebral palsy. In the plots, the black line
represents the mean FA for typically developing children at 100 points
along the tract and light gray region represents the boundaries for the
10th to 90th percentile. The yellow line represents the patient’s FA along
the tract. The patient has low FA along the corticospinal tract.
doi:10.1371/journal.pone.0049790.g006
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positively correlated with single word reading skills. The magni-

tude of the correlation varies along the trajectory of the tracts, with

the largest correlation coefficient occurring along the central

portion where fibers are coherently bundled together and oriented

anterior-posterior. The location on the tract where the correlation

is highest elucidates the potential biological characteristics that

underlie the correlation. Within this central portion of the tract

there is minimal contamination of FA measurements from crossing

and curving fibers and FA values might be more indicative of the

organization of axons within the main fascicles than are FA values

at other locations.

Diffusion measurements and neurological case studies clearly

point to an association between the left arcuate fasciculus and

reading related skills [6,46,51] for review see [52]. However,

children can learn to read without the arcuate fasciculus when

damage occurs early in life [53]. Longitudinal and intervention

studies are needed to understand how the anatomy of the arcuate

fasciculus interacts with reading instruction and reading skills.

Future research, with additional quantitative measurements is

needed to explain why the FA-reading correlation is negative in

typically developing children yet positive in a clinical population of

children born preterm.

Figure 7. Behavioral Tract Profiles show the correlation between reading skills and FA along the left superior longitudinal
fasciculus and left arcuate fasciculus. The correlation between reading skills and FA was computed at each point along the Tract FA Profile for
the (a) left superior longitudinal fasciculus and (b) left arcuate fasciculus in the children born preterm. The resulting Behavioral Tract Profile is mapped
to the fiber tracts of a single representative subject. Colors correspond to the magnitude of correlation between reading scores and FA at each of 100
equidistant points along the tracts for the children born preterm. The correlations were not uniform along the tracts. Scatter plots show the
association between FA (x-axis) and Basic Reading Standard Scores (y-axis) for the point of maximal correlation.
doi:10.1371/journal.pone.0049790.g007
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Tract Profiles versus voxel based analysis
Automated Fiber Quantification is based on tracking specific

fiber groups in individual subjects. We use this approach because

the principal alternative, whole-brain voxel-based analyses (VBA),

requires co-registering data across subjects and computing

statistics at each voxel. Such methods lack the necessary precision,

for making inference at the individual level. For example, Hua et

al. (2008) identified 20 fiber tracts in 28 individuals based on

tractography and co-registered these brains to create a fiber tract

probability map. For each tract they quantified the proportion of

subjects with fibers in each voxel. There were very few voxels that

corresponded to the same tract for more than half the subjects.

Voxel-based probability maps can provide a rough guide for

where major tracts are likely to be found. However, diffusion

differences identified by VBA are likely to include errors from

misalignment of structures. Differences between groups may

represent analysis of different structures and not necessarily

differences localized to a specific white matter tract. The issue of

misalignment is particularly problematic for clinical populations

where fiber tracts take varying trajectories around injured brain

regions. We have demonstrated that in a pediatric, clinical,

population with high variability in brain anatomy, AFQ can

reliably identify 18 major white matter fascicles and localize

abnormalities at specific locations on these fascicles in individual

patients.

Future Directions
The AFQ software is modular and allows users to incorporate

new analysis methods and data types. For clinical purposes

conventional low b-value DWI data and a tensor model may be

optimal because these data are rapidly acquired, have a high signal

to noise ratio and are sufficient for the accurate identification of 18

major white matter tracts with AFQ. Newly developed high

angular resolution diffusion imaging (HARDI) data acquisition,

models and tractography algorithms may provide additional

precision particularly for tracts such as the SLF that pass through

multiple regions of crossing fibers. However, the benefits of

HARDI data for Tract Profiles for will need to be tested in future

studies.

AFQ provides a framework for combining quantitative imaging

data from multiple modalities. While diffusion imaging is

quantitative, diffusion properties are not biologically specific.

Future work using quantitative T1 and Proton Density (PD) in

combination with DWI-tractography based fiber tract segmenta-

tion will elucidate the precise biological underpinnings of neural

injuries in clinical conditions including multiple sclerosis.

The AFQ segmentation procedure can be modified to include

additional fiber tracts. The vertical occipital fasciculus is a recently

characterized fiber bundle that connects to a region in ventral

occipital temporal cortex that is essential for skilled reading [54].

Furthermore the SLF has three subcomponents, SLF 1, 2 and 3,

that AFQ analyzes as a single fascicle [55]. In our data the

distribution of fiber coordinates within the ILF is bimodal

suggesting that the typical ILF segmentation convolves two

separate fiber bundles that could be separated. These detailed

segmentations were beyond the scope of this paper but are targets

for future software development within AFQ.

A current limitation of AFQ is that only a central portion of the

fiber tract is analyzed. This decision avoids the need for additional

coregistration procedures because as we have shown, the central

portion is in register across subjects. Some studies suggest that

analyzing profiles along the full length of the tract requires manual

coregistration of tract landmarks [27], while other studies suggest

that re-sampling the tract to an equivalent number of nodes is

sufficient [31]. Future releases of AFQ will include an algorithm to

automatically identify tract landmarks and align full Tract Profiles

across subjects.

Conclusions
The opportunity to automatically quantify diffusion properties

along a tract enriches the understanding of normal and abnormal

anatomy. It has increased sensitivity to detection of developmental

and clinical changes and increased specificity for the identification

of locations of change compare to methods that summarize a

whole tract with a single statistic. This methodology appears to

offer enormous potential in the clinical setting, particularly in the

comparison of individual patients to normative populations by

providing quantitative assessments of the individual patients

deviation from the norms. We recognize that we are reporting

on healthy children and adolescents and only one clinical

population. The demonstration that this approach can be applied

more generally in clinical research and practice requires investi-

gations of its utility in other clinical populations. To facilitate

future studies in different clinical groups we make the software

open source and freely available at https://github.com/jyeatman/

AFQ with online documentation available at http://white.

stanford.edu/newlm/index.php/AFQ.

Further testing of the algorithms is necessary. Ultimately, we

hope that rapid accurate methods of white matter characterization

can be done at young ages to identify children at risk for

neurodevelopmental disorders. The children can then receive

appropriate interventions to ameliorate their conditions. These

methods may prove sensitive to changes in the diffusion properties

as a function of successful intervention, providing evidence of the

mechanisms of change with therapy.

Methods

Subjects
Participants were 9–16 years old and enrolled in the Palo Alto

CA site of a larger multi-site study of prematurity outcomes [36].

This study reports on 48 typically developing control children and

26 age- and gender-matched children born preterm, all of whom

underwent MRI scanning at Stanford University. The Stanford

University institutional review board approved this study. A parent

provided informed consent; children provided assent.

Preterm subjects were born at ,36 weeks gestation with birth

weight ,2500 grams. Controls were born .37 weeks. Exclusion

criteria for all participants included seizure disorder; hydroceph-

alus; receptive vocabulary score ,70; sensorineural hearing loss;

and non-English speaker. Controls were excluded for identified

language, learning, or psychiatric disorders.

Medical complications at birth in the preterm group were: 4

with abnormal findings on head ultrasounds or MRIs (.grade 2

intraventricular hemorrhage, echodensities, or cystic lesions), two

with mildly abnormal findings (grade 1 hemorrhage or choroid

plexus cyst); 13 had respiratory distress syndrome, five developed

bronchopulmonary dysplasia (BPD) or chronic lung disease; none

had necrotizing enterocolitis; and two were small for gestational

age (,3rd percentile birth weight for gestational age).

Behavioral Assessment
All 26 of the preterm subjects and 18/48 of the full term control

subjects were administered the Woodcock Johnson Basic Reading

Skills Composite Index. The Basic Reading Skills Composite

Index combines the scores on the Woodcock Johnson Word

Identification subtest that assess reading single words and the

Word Attack subtest that measures reading of pseudo-words. The
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mean Basic Reading Skills score was 107 (sd = 9.7) for the full term

control subjects and 105 (sd = 12.5) for the preterm subjects.

Diffusion weighted imaging acquisition and processing
Diffusion weighted imaging (DWI) data were acquired on a 3T

Signa Excite (GE Medical Systems, Milwaukee, WI) at Stanford

University. A diffusion-weighted, single-shot, spin-echo, echo-

planar imaging sequence (TE = 80 ms, TR = 6500 ms,

FOV = 240 mm, matrix size = 1286128) was used to acquire 60

2 mm-thick slices in 30 different diffusion directions (b = 900) for a

voxel resolution of 26262 mm. The sequence was repeated 4

times and 10 non-diffusion weighted (b = 0) volumes were

collected.

Eddy current distortions and subject motion in the diffusion-

weighted images were removed by a 14-parameter constrained

non-linear co-registration based on the expected pattern of eddy-

current distortions given the phase-encode direction of the

acquired data [56].

Each diffusion-weighted image was registered to the mean of the

(motion-corrected) non-diffusion-weighted (b = 0) images using a

two-stage coarse-to-fine approach that maximized the normalized

mutual information. The mean of the non-diffusion-weighted

images was automatically aligned to the T1 image using a rigid

body mutual information algorithm. All raw images from the

diffusion sequence were resampled to 2-mm isotropic voxels by

combining the motion correction, eddy-current correction, and

anatomical alignment transforms into one omnibus transform and

resampling the data using a 7th-order b-spline algorithm based on

code from SPM5 [57]. An eddy-current intensity correction was

applied to the diffusion-weighted images at the resampling stage.

The rotation component of the omnibus coordinate transform

was applied to the diffusion-weighting gradient directions to

preserve their orientation with respect to the resampled diffusion

images. The tensors were then fit using a robust least-squares

algorithm designed to remove outliers from the tensor estimation

step [58]. We computed the eigenvalue decomposition of the

diffusion tensor and the resulting eigenvalues were used to

compute the fractional anisotropy (FA), mean diffusivity, (MD),

radial diffusivity (RD) and axial diffusivity (AD) [2]. FA is the

normalized standard deviation of the three eigenvalues and

indicates the degree to which the isodiffusion ellipsoid is

anisotropic (i.e., one or two eigenvalues is larger than the mean

of all three eigenvalues). MD is the mean of the three eigenvalues,

which is equivalent to one-third of the trace of the diffusion tensor.

RD is the mean of the second and third eighenvalues. AD is the

first eigenvalue.

All the custom image processing software is available as part of

our open-source mrDiffusion package available for download from

http://white.stanford.edu/software/.

Automated Fiber Quantification (AFQ)
We developed a software package for the automatic identifica-

tion and quantification of cerebral white matter pathways that we

are making open source and freely available. The methodology

and algorithms are described here. The AFQ software can be

downloaded from https://github.com/jyeatman/AFQ. Addition-

ally, we are releasing an in-depth users manual that describes the

code in more detail and provides a step-by-step guide to data

analysis with AFQ. In this manuscript we apply AFQ to quantify

diffusion properties of major white matter fascicles. The software

was designed with flexibility to allow analysis of other quantitative

MRI measurements such quantitative T1, proton density and

magnetization transfer.

Fiber Tract Identification. AFQ uses a three-step proce-

dure to identify 18 major fiber tracts in an individual’s brain. The

procedure is based on a combination of the methods described by

Hua et al. [59] and Zhang et al. [60]: (1) fiber tractography, (2)

waypoint region-of-interest (ROI)-based fiber tract segmentation

and (3) fiber tract refinement based on a probabilistic fiber tract

atlas. Figure 8 depicts the AFQ analysis pipeline.

Step one, fiber tractography (Figure 8, panel 1): By default this

step estimates fiber tracts using a deterministic streamlines tracking

algorithm (STT) [8,9] with a fourth-order Runge–Kutta path

integration method and 1-mm fixed-step size. The tracking

algorithm is seeded with a white matter mask defined as all the

voxels with a fractional anisotropy (FA) value greater than 0.3. A

continuous tensor field is estimated with trilinear interpolation of

the tensor elements. Starting from initial seed points within the

white matter mask, the path integration procedure traces

streamlines in both directions along the principal diffusion axes.

Individual streamline integration is terminated using two standard

criteria: tracking is halted if (1) the FA estimated at the current

position is below 0.2 and (2) the minimum angle between the last

path segment and next step direction is greater than 30u. This

tracking procedure produces a candidate database of fibers for the

whole-brain that can then be segmented into anatomically defined

fascicles. Note that this step can be done with different fiber

orientation estimation methods (tensor, spherical harmonic etc.)

and different tractography algorithms.

Step two, fiber tract segmentation (Figure 8, panel 2) is done

based on the waypoint ROI procedure described in Wakana et al.

[17]. In this procedure fibers are assigned to a particular fiber

group if they pass through two waypoint ROIs that define the

trajectory of the fascicle. The ROIs are defined in locations that

isolate the central portion of the tract where the fibers are

coherently bundled together and before they begin diverging

towards cortex. Each waypoint ROI was drawn on a group-

average DTI data set in MNI space based on the anatomical

prescriptions defined in Wakana et al. [17]. The ROIs are

transformed into an individual’s native space based on an

estimated non-linear transformation to the MNI template space

[57]. This step is equivalent to the procedure described in Zhang

et al. [60], however we use a non-linear transformation instead of

a linear transformation. This segmentation procedure defines

which fibers are candidates for assignment to a particular fiber

group.

Step three, fiber tract refinement (Figure 8, panel 3) is

accomplished by comparing each candidate fiber to fiber tract

probability maps [59]. Hua et al. [59] created fiber tract

probability maps of major fascicles by manually segmenting and

coregistering each fiber groups for 28 healthy adult subjects, and

calculating for each voxel the proportion of subjects with a given

tract in that voxel. We transform the fiber tract probability maps

into an individual’s native space. Then candidate fibers for a

particular fiber group are assigned scores based on the probability

values of the voxels they pass through. Candidate fibers that take

aberrant trajectories through regions of low probability are

discarded. Each fiber in the resulting fiber group passes through

the two waypoint ROIs that define the central trajectory of the

fascicle and also conform to the shape of the tracts as defined by

the fiber tract probability maps.

Fiber Tract Cleaning. Tractography may make errors

because of noise in the data, regions of complex fiber orientation

and ambiguous stopping criteria. The result is that a few fibers

may be substantially different from the other fibers in that fiber

group. To clean each fiber group into a compact bundle spanning

between cortical regions, we implement an iterative procedure that
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removes fibers that are more than 4 standard deviations above the

mean fiber length or that deviate more than 5 standard deviations

from the core of the fiber tract (Figure 8, panel 4). To calculate a

fiber’s distance from the core of the tract we first resample each

fiber to 100 equidistant nodes and treat the spread of coordinates

at each node as a multivariate Gaussian. The fiber tract core is

calculated as the mean of each fibers x, y, z coordinates at each

node. The spread of fibers in 3-dimensional space is calculated by

computing the covariance between each fiber’s x, y, z coordinates

at each node. Thus each node on the tract is represented as a

mean coordinate, m, and a 3 by 3 covariance matrix, S. For each

node on each fiber we then calculate its Mahalanobis distance,

Dm(x), from the core of the tract as:

Dm(x)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x{m)T S{1(x{m)T

q

where x is a vector containing a fiber node’s x, y and z coordinates.

The Mahalanobis distance can be interpreted as a z score for a

multivariate Gaussian distribution, and corresponds to the

probability that a given point belongs to the distribution.

In each iteration, if there are more outliers than would be

expected in a Gaussian distribution, those fiber outliers are

removed. This process is repeated until there are no more fiber

outliers. The resulting fiber groups cohere to the common

conception of a fascicle: fibers are coherently bundled together

for the central portion of their trajectory before branching toward

their cortical destinations.

Fiber Tract Quantification. The waypoint ROIs used to

identify the fiber groups are defined in planes that are marked by

distinct anatomical features and these planes represent equivalent

anatomical locations across subjects. The locations of the ROIs

isolate the central trajectory of the fascicles. Even though the

cortical endpoints of a fascicle typically vary across subjects, the

central portion, bounded by the ROIs is generally consistent

across individuals. In this report we quantify the diffusion

properties of the fiber group along this central portion of the

fascicle by clipping each fiber in the fiber group to the portion that

spans between the two waypoint ROIs (Figure 8, panel 5) and

resampling each fiber to 100 equally spaced nodes. The AFQ

software includes options to calculate Tract Profiles for the full

tract length or for the region between the defining ROIs. There

are benefits to analyzing the full tract length however, it is

important to recognize that the distal portions of the tract may not

be in register across subjects. Analysis of the full Tract Profile may

require additional coregistration procedures.

Diffusion properties are calculated at each node of each fiber

using spline interpolation of the diffusion properties: fractional

anisotropy FA, mean diffusivity (MD), radial diffusivity (RD) and

axial diffusivity (AD). Properties are summarized at each node by

taking a weighted average of the diffusion properties at that node

on each fiber (Figure 8, panel 6). A fiber’s contribution to the

average is weighted by the probability that the fiber is a member of

the fascicle. This probability is calculated based on the fiber’s

Mahalanobis distance from the fiber tract core. For example fibers

traveling at the core of the fascicle are weighted heavily as these

fibers are likely to represent a pure measurement of the tract.

Further from the core of the tract diffusion measurements are

likely to reflect a mix of white matter and gray matter or white

matter and cerebral spinal fluid or white matter from other tracts.

Figure 8. Automated Fiber Quantification (AFQ) procedure for the left hemisphere inferior fronto-occipital fasciculus. (1) Whole brain
tractography is initiated from each white matter voxel with fractional anisotropy (FA) .0.3. (2) Fibers that pass through two waypoint regions of
interest (ROIs) become candidates for the left IFOF fiber group. (3) Each candidate fiber is then scored based on its similarity to a standard fiber tract
probability map. Fibers with high probability scores are retained. (4) Fibers tracts are represented as a 3-dimensional Gaussian distribution and outlier
fibers that deviate substantially from the mean position of the tract are removed. (5) The fiber group is clipped to the central portion that spans
between the two defining ROIs. (6) The fiber group core is calculated by resampling each fiber into 100 equidistant nodes and calculating the mean
location of each node. Diffusion measurements are calculated at each node by taking a weighted average of the FA measurements of each individual
fibers diffusion properties at that node. Weights are determined based on the Mahalanobis distance of each fiber node from the fiber core.
doi:10.1371/journal.pone.0049790.g008

Tract Profiles of White Matter Properties

PLOS ONE | www.plosone.org 13 November 2012 | Volume 7 | Issue 11 | e49790



The admixing of multiple tissue types within a voxel is known as

partial voluming and will bias diffusion measurements. Hence a

fiber that diverges from the tract core will not contribute

substantially to the tract summary. We summarize each fiber

group with a vector of 100 values representing the diffusion

properties sampled at equidistant locations along the central

portion of the tract. We call this the Tract Profile.
Individual and Group Level Inference. Standardized

Tract Profiles can be created by calculating the mean and

standard deviation of each diffusion property at each node of each

tract in a control sample. For our purposes this sample was healthy

and typically developing children. We generate confidence

intervals for each tract, and can quantify how similar each patient

is to the standard Tract Profile.

Univariate statistics such as correlations and T-tests can be

calculated point-wise along the Tract Profiles. Given the high

degree of correlation between neighboring points on the tract

profile each point should not be treated as an independent

comparison; hence a Bonferroni correction is overly conservative.

We use the permutation based multiple comparison correction

described by Nichols and Holmes (2001) to appropriately adjust p-

values given the correlation structure of the data [61].

AFQ produces reliable measures of tract diffusion
properties

As a prerequisite for producing and analyzing tract diffusion

profiles, we first assessed the reliability of the automated tract

segmentation algorithm in identifying the tracts. We reasoned that

the algorithm should produce consistent results if multiple scans

were obtained for the same individual, akin to test-retest reliability

in clinical assessment. Our DWI protocol included four indepen-

dent repeats of a 30-direction DWI sequence. For each subject, we

divided the data into two sets; we averaged scans 1 and 2 as set 1,

and scans 3 and 4 as set 2. We then processed each data set with

AFQ and extracted the mean FA value for each tract in each

individual for the two independent scan sessions. We computed

the scan-rescan reliability independently for each tract and found

that the median correlation for FA values for each tract from set 1

and set 2 was r = 0.93 with a standard deviation of 0.07. This

result demonstrates that the measurements generated by AFQ are

highly reliable within an individual across scan sessions. Also note

that the correlation reported here represents the reliability of the

AFQ analysis for a DWI sequence with 2, 30-direction data sets

averaged together rather than the full sequence that we typically

use which averages 4, 30-direction data sets. The scan rescan

reliability would be even higher if all 4 scans were averaged

together.

As a more demanding measure of reliability, we then compared

the mean FA of tracts obtained by two methods–manual

segmentation, considered the gold standard for tract identification,

(Wakana et al. 2007) and AFQ tract identification. For this

analysis we selected six tracts: left and right inferior frontal-

occipital fascicle, left and right uncinate fasciculus and left and

right superior longitudinal fasciculus. To test the automated

method in a clinical sample, we assessed the degree of correlation

between tract mean FA measurements from the manual and

automated methods in the preterm children. These patients had a

range of white matter abnormalities on conventional MRI scans

ranging from normal to severe injury, including 3 with severe

ventricular dilitation [32]. Correlations between the manual and

automated methods were very high for each tract. The median

correlation between the FA values obtained from the two methods

was r = 0.98 with a standard deviation of 0.04. Figure 9 shows the

tract mean FA values obtained from manual segmentation plotted

against the values from the AFQ automated segmentation. For

nearly every subject the values lie on the identity line demonstrat-

ing near perfect correspondence between the methods. Hence The

AFQ automated fiber tract segmentation is consistent with the

time-consuming manual techniques that have served as the gold

standard.

The subject that shows a discrepancy between the manual and

automated methods for the right uncinate fasciculus has severe

ventricular dilitation. For this subject the automated uncinate ROI

placement was imperfect due to extremely abnormal brain shape.

Most of the fiber tract segmentations were accurate for these

severely abnormal brains, however it is important to manually

inspect the ROIs and resulting fiber groups for patients with severe

abnormalities because misalignment is possible.
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