
NeuroImage 181 (2018) 645–658
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Tractography optimization using quantitative T1 mapping in the human
optic radiation

Roey Schurr a,1, Yiran Duan b,1, Anthony M. Norcia b, Shumpei Ogawa c,d, Jason D. Yeatman e,f,
Aviv A. Mezer a,*

a Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
b Department of Psychology, Stanford University, CA, USA
c Department of Ophthalmology, Atsugi City Hospital, Kanagawa, Japan
d Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
e Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA
f Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
A R T I C L E I N F O

Keywords:
Tractography evaluation
Relaxometry
T1
Optic radiation
Abbreviations: OR, optic radiation; T1-STD, T1 s
* Corresponding author. Edmond & Lily Safra Ce
E-mail address: aviv.mezer@elsc.huji.ac.il (A.A.

1 These authors contributed equally to this work

https://doi.org/10.1016/j.neuroimage.2018.06.060
Received 25 January 2018; Received in revised for
Available online 21 June 2018
1053-8119/© 2018 Elsevier Inc. All rights reserved
A B S T R A C T

Diffusion MRI tractography is essential for reconstructing white-matter projections in the living human brain. Yet
tractography results miss some projections and falsely identify others. A challenging example is the optic radiation
(OR) that connects the thalamus and the primary visual cortex. Here, we tested whether OR tractography can be
optimized using quantitative T1 mapping. Based on histology, we proposed that myelin-sensitive T1 values along
the OR should remain consistently low compared with adjacent white matter. We found that complementary
information from the T1 map allows for increasing the specificity of the reconstructed OR tract by eliminating
falsely identified projections. This T1-filtering outperforms other, diffusion-based tractography filters.

These results provide evidence that the smooth microstructural signature along the tract can be used as
constructive input for tractography. Finally, we demonstrate that this approach can be applied in a case of
multiple sclerosis, and generalized to the HCP-available MRI measurements. We conclude that multimodal MRI
microstructural information can be used to eliminate spurious tractography results in the case of the OR.
1. Introduction

In vivo investigations of the human brain using MRI have advanced
dramatically over the past two decades. This is particularly true for
studying the long projections of the white matter using diffusion MRI.
This technique is sensitive to local tissue architecture at the micrometer
scale, including fiber orientation (Chenevert et al., 1990; Stejskal and
Tanner, 1965). Tractography algorithms exploit this local signal to
reconstruct 3D streamlines, representing the trajectory of white-matter
pathways. Nearly all measurement methods are subject to a
sensitivity-specificity tradeoff, and tractography is no exception: The
tractography-derived streamlines either miss some of the underlying
fascicles (false negatives), or include spurious streamlines that do not
correspond to actual fascicles in the underlying tissue (false positives)
(Kn€osche et al., 2015; Maier-Hein et al., 2017; Thomas et al., 2014). This
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limits the accurate mapping of white-matter tracts.
A good example for the challenges in tractography is the case of the

optic radiation (OR). The human OR is a white-matter tract connecting
the lateral geniculate nucleus (LGN) of the thalamus, to the primary vi-
sual area, V1. The OR is commonly used to demonstrate the performance
of new tractography methods for both methodological and clinical rea-
sons (Chamberland et al., 2016; Kammen et al., 2016; Lim et al., 2015;
Portegies et al., 2015; Sherbondy et al., 2008b; Tournier et al., 2012). The
challenges in tractography reconstruction, and in OR reconstruction in
particular, have been attributed to a variety of factors. Importantly, the
local diffusion signal is ambiguous – similar signals can arise from
different fascicle configurations, such as crossing and kissing (Jbabdi and
Johansen-Berg, 2011). This leads to local errors in the tractography
tracking process, which can propagate and lead to unfavorable global
effects in tractography. For example, a recent challenge based on a
edian; ML, Meyer's loop; MS, Multiple sclerosis.
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simulated diffusionMRI dataset from the human brain showed that while
state-of-the-art probabilistic tractography algorithms largely reduce the
occurrence of false negative results, they produce a large number of false
positive streamlines (Maier-Hein et al., 2017). Indeed, the same study
found that the OR was one of the hardest tracts to identify accurately.
This is particularly true of the challenging anterior sub-bundle of the OR,
including Meyer's loop. Therefore, when tracking specific white-matter
tracts, as in the case of the OR, multiple spatial landmarks are often
used to minimize false positive results (Catani and Thiebaut de Schotten,
2008; Dayan et al., 2015; Kammen et al., 2016; Martínez-heras et al.,
2015).

The field has introduced a plethora of new methods to mitigate the
sensitivity-specificity tradeoff in tractography, each targeting a different
step in the tractography pipeline (Wandell, 2016). These include
advanced techniques for data acquisition (Frank, 2001; Tuch et al.,
2003), sophisticated models of the local diffusion signal (Ozarslan et al.,
2013; Rokem et al., 2015; Tournier et al., 2007; Tuch et al., 2003), global
tractography algorithms and tractography evaluation techniques
(Daducci et al., 2015; Pestilli et al., 2014; Sherbondy et al., 2008a; Smith
et al., 2015). A recent advancement is microstructure-informed tractog-
raphy, which aims to map microstructural properties along white-matter
fascicles. These algorithms build on the assumption that the micro-
structural properties remain constant, or change smoothly, along the
fascicle (Daducci et al., 2016; Alexander et al., 2017). While current
microstructure-informed tractography algorithms use only diffusion MRI
data, they can benefit greatly from multimodal MRI-based microstruc-
tural inputs. Indeed, it has been hypothesized that tractography analysis
could be integrated with other MR imaging measurements to mitigate its
current limitations (Alexander et al., 2017; Jbabdi and Johansen-Berg,
2011; Maier-Hein et al., 2017). This hypothesis can now be tested
using quantitative MRI (qMRI) techniques, which provide complemen-
tary information about the white-matter microstructure.

The goal of the current study is to test the specific hypothesis that
microstructural information derived from a quantitative T1 map can be
used for evaluating tractography results of the human OR and differen-
tiating valid streamlines from invalid ones. Postmortem studies have
Fig. 1. The optic radiation (OR) has a unique microstructural signature. (a) The
brain stained for myelin the OR is seen to be highly myelinated (dark) compared to
map of the white matter overlaid on top of a T1-weighted image of the same subject.
(d) A schematic illustration of the T1-consistency hypothesis: The T1 profiles along
deviation (T1-STD) and low median values (T1-Mdn). Here only the light blue strea
Virtual Hospital (Williams et al., 1997). The image in (b) was kindly provided by t
~brains/brains/human/index. html), which received funding from the U.S. Nationa
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shown that the OR has consistently high myelination compared to
adjacent white-matter tracts (Fig. 1b) (Bürgel et al., 1999). T1 is thought
to be sensitive to myelination, where higher myelin content leads to
lower T1 values (Lutti et al., 2014; Stüber et al., 2014). We found that the
OR's smooth myelination signature is reflected in the T1 map (Fig. 1b–c;
Supplementary Fig. 1). We propose that streamlines representing true OR
fascicles have a relatively consistent microstructural signature along
their path, which is indicated by a low-value T1 profile. Based on this
T1-consistency finding, we developed a T1-filtering approach, in which
information from a T1 map is integrated into the process of tractography
evaluation of the OR, allowing the elimination of false positive results
(Fig. 1d). We found that in the case of the OR, T1-filtering complements
diffusion-based filters. We then show that tractography evaluation of the
OR using T1 mapping can be applied in a case of focal white-matter le-
sions. Moreover, we generalize our approach to the myelin related
semi-quantitative contrast of T2-weighted divided by T1-weighted im-
ages (Glasser and Van Essen, 2011).

2. Methods

2.1. Subjects

In this article we used two datasets, one from (Yeatman et al., 2014)
and one from the Human Connectome Project (HCP; Van Essen et al.,
2012).

The subjects of the first dataset were taken from a larger dataset
collected at Stanford University (Yeatman et al., 2014). For this study, we
selected a subset of subjects using the following criteria: right-handed
adults between the ages of 18 and 55 years. Three of the subjects were
excluded from this study as their anatomical scans did not include the
entire occipital lobe. From the original 102 subjects, this yielded a se-
lection of 31 subjects (14 men; mean� STD age 33� 11 years). In
addition, we included one volunteer with relapsing-remitting multiple
sclerosis (male, age 42) from the same dataset.

Data collection procedures were approved by the Stanford University
Institutional Review Board. Subjects were recruited from the San
OR in a dissected postmortem brain shown from below. (b) In an axial slice of a
surrounding tissue. Credit to National Science Foundation. (c) A quantitative T1
The OR has a unique signature of low T1 values compared to surrounding tissue.
true OR streamlines from diffusion-MRI tractography should have low standard
mline truly corresponds to the OR. The image in (a) was reproduced from the
he Brain Biodiversity Bank, Michigan State University (https://www.msu.edu/
l Science Foundation.
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Francisco area and were screened for neurological, cognitive and psy-
chiatric disorders. All subjects provided informed consent.

The second dataset included a subset of 30 unrelated randomly
selected subjects (14 male) from the HCP dataset. All subjects are young
adults at the age of 22–35.

2.2. MRI acquisition and processing

Data for the first dataset were collected at Stanford University's
Center for Cognitive and Neurobiological Imaging (www.cni.stanford.
edu), using a 3T General Electric Discovery 750 (General Electric
Healthcare, Milwaukee, WI, USA) equipped with a 32-channel head coil
(Nova Medical, Wilmington, MA, USA).

2.2.1. T1 mapping
For the first dataset, T1 relaxation was computed from spoiled

gradient (SPGR) echo images acquired at different flip angles (α ¼ 4�,
10�, 20�, 30�, TR¼ 14ms, TE¼ 2.4ms) and spatial resolution of 1mm3

isotropic. The data contained an additional spin echo inversion recovery
(SEIR) scan that is free from transmit-coil inhomogeneity (Barral et al.,
2010; Mezer et al., 2013). The SEIR was done with an echo planar im-
aging (EPI) readout, a slab inversion pulse, and spectral spatial fat sup-
pression. For the SEIR-EPI acquisition, the TR was 3 s; echo time was set
to minimum full; inversion times were 50, 400, 1,200, and 2400ms. The
SEIR resolution is 2 mm2 in-plane with a slice thickness of 4 mm. The EPI
readout was performed using 2� acceleration to minimize spatial dis-
tortions. Whole-brain T1 maps were computed as described in previous
publications (Berman et al., 2017; Mezer et al., 2016, 2013). In short,
unbiased T1 maps were calculated using the SPGRs which were corrected
for B1 excite inhomogeneity using the unbiased SEIR data (Barral et al.,
2010). For each subject, we also synthesized a T1-weighted (T1w) image
from the multi flip-angle SPGR images. The analysis pipeline for pro-
ducing the unbiased T1 maps is an open source MATLAB code available
at (https://github.com/mezera/mrQ). We used ANTs to non-linearly
warp the T1 map to the space of the diffusion MRI data.

In addition, for the multiple sclerosis patient, a fluid-attenuated
inversion recovery (FLAIR) image was acquired with 0.43� 0.43mm
in-plane resolution and 5mm axial slice thickness.

2.2.2. T2w divided by T1w contrast images
For the HCP dataset, we analyzed the structural MRI that included T1-

weighted and T2-weighted images with 0.7 mm isotropic spatial reso-
lution. First, we divided the T2-weighted and T1-weighted images to
obtain a T2w/T1w image. The contrast of this image is similar to that of a
quantitative T1 map, and opposite to contrast of the commonly used
T1w/T2w image (Glasser and Van Essen, 2011). Taking the ratio of two
images removes most of the shared biases, like the receive-coil in-
homogeneities. Remaining slow-varying biases in space due to imper-
fections such as residual excite coil inhomogeneity were removed using
the N4 algorithm in ANTs (Tustison et al., 2010) with a white-matter
probability map as a weights mask input to the algorithm, to reduce
partial volume effects (Tustison et al., 2014). Last, we used ANTs to
non-linearly warp the T2w/T1w image to the space of the diffusion MRI
data.

2.2.3. Diffusion weighted imaging
Diffusion weighted MRI data for the first dataset were acquired using

dual spin-echo diffusion-weighted sequences with full-brain coverage.
Diffusion weighting gradients were applied at 96 non-collinear directions
across the surface of a sphere as determined by the electrostatic repulsion
algorithm (Jones et al., 1999). In all subjects, diffusion MRI data were
acquired at 2mm isotropic spatial resolution and the strength of the
diffusion weighting was set to b¼ 2000 s/mm2 (TE/TR¼ 93.60/7,
800ms, G¼ 53mT/m, δ ¼ 21ms, Δ ¼ 25.4ms). The data include eight
non-diffusion-weighted images (b¼ 0) at the beginning of each mea-
surement. Subject motion was corrected using a rigid-body alignment.
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Diffusion gradients were adjusted to account for the rotation applied to
the measurements during motion correction. The dual spin-echo
sequence we used does not require eddy current correction because it
has a relatively long delay between the RF excitation pulse and image
acquisition. This allows sufficient time for the eddy currents to dephase.
Preprocessing was implemented in MATLAB (MathWorks, Natwick, MI,
USA) and are publicly available as part of the Vistasoft GitHub repository
(http://github.com/vistalab/vistasoft/mrDiffusion; see dtiInit.m).

For the HCP dataset we used high resolution HARDI data with
b¼ 2000 s/mm2 and 90 diffusion directions with a spatial resolution of
1.25mm isotropic spatial resolution (Feinberg et al., 2010; Moeller et al.,
2010; Setsompop et al., 2012; Sotiropoulos et al., 2013).

2.3. Tractography of the OR

For each subject and hemisphere, we generated a set of 100,000
candidate OR streamlines confined to the white-matter mask using the
probabilistic tractography algorithm implemented in ConTrack with
default parameter values. In particular, we used dtiInit (Vistasoft) to
identify the white-matter mask. To allow streamlines to enter the gray
matter seed and target regions we define a relatively permissive stopping
criterion (0.65 white-matter probability) for the ConTrack tracking al-
gorithm. Seed and target regions of interest (ROIs) of thalamus and V1
were automatically extracted from the T1w image using FreeSurfer
(Fischl, 2012). As these ROIs were defined in the SPGR space of the T1w
images, we used ANTs (Avants et al., 2009) to warp them to diffusion
MRI space. Specifically, we computed a non-linear transformation be-
tween the T1 map and the mean b0 image of the diffusion MRI data,
minimizing the mutual information of the two volumes. Streamlines
crossing the corpus callosum to the other hemisphere were discarded.

2.4. Automatic OR benchmark creation using spatial constraints

We developed an automated procedure for creating subject-specific
OR bundles using spatial constraints. We refer to them as the “OR
benchmark”, as these bundles later served as the gold standard in
assessing the performance of different tractography filtering methods.
Following earlier work, the OR benchmark was defined as a subset of the
100,000 OR candidates, based on a series of spatial inclusion and
exclusion criteria (See Appendix B). In short, only streamlines with
endpoints at the lateral geniculate nucleus (LGN) were included.
Streamlines entering the corpus callosum and streamlines going down
through the pons were automatically discarded. To eliminate gross out-
liers, we discarded any streamlines whose length was more than 4
standard deviations above the mean fiber length. Finally, the resulting
OR benchmarks were inspected by an expert neuro-ophthalmologist and
manually edited if necessary.

2.5. Identifying white-matter tracts adjacent to the OR

We identified four fiber tracts adjacent to the OR in each individual
hemisphere using the Mori atlas (Wakana et al., 2004) implemented in
the Automated Fiber Quantification (AFQ) toolbox (Yeatman et al.,
2012): Forceps Major (F. Major), Inferior Fronto-Occipital Fasciculus
(IFOF), Inferior Longitudinal Fasciculus (ILF) and the Uncinate Fascic-
ulus (UF) (see Fig. 2b). These fiber tracts were extracted from a
whole-brain tractography performed using the MRtrix software (Tour-
nier et al., 2012). We generated 500,000 streamlines confined to the
white-matter mask using deterministic streamline tractography with
default parameter values, and a maximum harmonic order (lmax) of 6.

2.6. Estimating T1 along white-matter tracts

Similar to the analysis in Yeatman et al. (2014), we used AFQ
(Yeatman et al., 2012) to compute the T1 profile along the different
tracts. In addition a similar analysis was done for the OR benchmarks.

http://www.cni.stanford.edu
http://www.cni.stanford.edu
https://github.com/mezera/mrQ
http://github.com/vistalab/vistasoft/mrDiffusion
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Briefly, each streamline was resampled to 100 equally spaced nodes, and
the T1 of each node was sampled from the warped T1map. The tract core
was calculated as the robust mean position of all streamlines per node.
The T1 tract profile was calculated along the core of the tract as a
weighted sum of the T1 values of all the streamlines at any given node,
weighted by the Mahalanobis distance of each streamline from the core
of the tract.

We additionally calculated the T1 profile separately for the anterior
sub-bundle that includes the Meyer's loop of the OR. The anterior sub-
bundle was defined by all OR benchmark streamlines that extended
more than 8mm anterior to the LGN.

2.7. Tractography filtering

2.7.1. Tractography filtering using T1 mapping
The candidate set of OR streamlines included many false-positive

streamlines. To obtain an optimized subset representing the OR, we
filtered streamlines by setting an upper threshold on summary statistics
derived from their T1 profiles. First, we computed the T1 profile of each
streamline based on the subject's warped T1 map, using the AFQ (Yeat-
man et al., 2012). We next calculated the standard deviation and the
Fig. 2. The distinct T1 signature of the OR. (a) Boxplots indicating the
average T1 along the core of the OR benchmark and adjacent white-matter
tracts (averaged across n¼ 62 hemispheres). The OR benchmark shows the
lowest T1 on average. Center lines indicate median values; notch indicates 95%
confidence interval for the median; box limits indicate the interquartile range
(IQR; 25th-75th percentiles); whiskers extend to the most extreme data points
within 1.5 � IQR outside the box; outliers are represented as red crosses. The OR
T1 is significantly lower compared with other tracts (paired samples t-test with
Bonferroni correction (p< 2� 10�8 for all tracts). (b) Axial and sagittal views of
the reconstructed white-matter tracts overlaid on a T1-weighted image in one
representative subject (OR, blue; F. Major, green; IFOF, purple; ILF, red;
UF, brown).
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median values of each streamline's T1 profile, which we refer to as
T1-STD and T1-Mdn, respectively. Streamlines were then filtered out
using one of three different methods: using an upper threshold on
T1-STD, or on T1-Mdn, or on both T1-STD and T1-Mdn (T1-STD-Mdn
filtering). We explored a range of thresholds, determined as percentiles of
the full candidate set. For a single statistic, we used the following per-
centiles: 0.1, 0.5, 1, 2, 3, 5–95 in steps of 2, 97, 98, 99, 99.5, 99.9 and
100. For two combined statistics, we additionally used all possible pairs
of these values for both statistics.

We compared our T1-filtering approach with two published methods
for tractography filtering that are based on the fit to the diffusion MRI
data: ConTrack scoring (Sherbondy et al., 2008a) and Linear Fascicle
Evaluation (LiFE) (Caiafa and Pestilli, 2017).

2.7.2. Tractography filtering using ConTrack scoring
The ConTrack scoring algorithm assigns each streamline a score that

combines the fit of local streamline orientation to the local diffusion data,
as well as prior information regarding the streamline length and
smoothness (Sherbondy et al., 2008a). For all subjects, we explored a
range of ConTrack scores, using the same percentile values as above.

2.7.3. Tractography filtering using LiFE
While ConTrack was designed for tracking between two predefined

ROIs, the LiFE algorithm for tractography filtering requires as input a set
of whole-brain streamlines (i.e., a tractogram). We therefore generated
for each subject a whole brain tractogram similarly to Section 2.5, but
with the probabilistic streamline method (SD_PROB). We combined the
resulting tractogram with the 200,000 OR candidates generated using
ConTrack. LiFE optimizes a set of streamlines by keeping only those
streamlines which are necessary to predict the original diffusion data.
Each streamline is assigned a weight which reflects its contribution to
that prediction (Caiafa and Pestilli, 2017; Pestilli et al., 2014). The
whole-brain optimized tractogram is obtained by keeping only stream-
lines with a nonzero weight. To obtain the subset of optimized stream-
lines corresponding to the OR and to account for differences in the
stopping criteria of the two tractography methods, we only kept those
streamlines whose endpoints are within 4mm from the thalamus and V1
ROIs.

2.7.4. Tractography filtering assessment using ROC curves
To quantitatively assess the accuracy of each tractography filtering

method, we used a receiver operator characteristic (ROC) analysis similar
to that used in previous studies (Clatworthy et al., 2010; Lim et al., 2015;
Thomas et al., 2014). This method is based on the voxelwise overlap
between the filtered subset and some ground truth. We used the bench-
mark OR as the gold standard to identify whether the OR passes through
each voxel. We evaluated each filtered subset by determining which
voxels in the filtered subset are within the benchmark OR (hit) and which
are not (false alarm). For each set of streamlines (candidate set,
T1-filtered subset using a specific threshold etc.), we computed a binary
image that represent all voxels with at least one streamline passing
through it. We denote the binary images of (1) the candidate set, (2) the
benchmark subset and (3) the filtered subset as Mcan, Mben and Mfil,
respectively. For each filtered subset of streamlines we defined the true
positive rate (TPR, also known as sensitivity, or ‘hit’) as the fraction of
Mfil voxels that are shared with Mben. We defined the false positive rate
(FPR, equal to 1-specificity, also known as false alarm) as the fraction of
Mfil voxels that are shared with Mcan but not with Mben:

sensitivity ¼ TPR ¼
P�

Mfil&Mben

�

P�
Mfil

�

1� specificity ¼ FPR ¼
P�

Mfil& ð!MbenÞ
�

P½ðMcanÞ&ð!MbenÞ�

where the sum is over all voxels in the map and “!” denotes the logical
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NOT operator.
Using the calculated sensitivity and specificity values, each filtered

subset is represented as a point in the sensitivity versus 1-specificity
plane. By varying the filtering threshold value (e.g., maximal T1-STD),
a full ROC curve can be plotted. For the case of combined T1-STD and
T1-Mdn thresholds, we created a single curve by progressing from (1-
specificity)¼ 0 to (1-specificity)¼ 1, including only points whose sensi-
tivity is higher or equal to all previous points.

In the case of LiFE-filtering, no threshold was used, and each subject
had only one subset of streamlines (all those that were assigned a non-
zero weight). LiFE results for each hemisphere were therefore repre-
sented as a single point in the sensitivity versus 1-specificity plane.

To plot the mean ROC curve for each method across subjects and
hemispheres, we represented each curve using a smoothing spline, which
we then sampled in 100 equally distant points between 0 and 1. The best
ROC curve is the one that passes closest to the optimal point of the upper
left corner, where perfect sensitivity and specificity are obtained
(Fig. 6a).

To evaluate the ROC curves of each method quantitatively, we
computed two commonly used summary statistics, the area under the
curve (AUC) of the ROC curve, and the maximal Youden's index along the
curve, Jmax (Youden, 1950). The AUC is often used to measure howwell a
classifier discriminates between two classes, in this case between
false-positive and true-positive voxels. Youden's index (J) is a point-wise
measure of the ROC curve, defined as:

J ¼ sensitivity þ specificity – 1, and ranges between �1 and 1. To
obtain high J, both sensitivity and specificity must be high. A greater
weight can be given to either sensitivity or specificity by defining a
weighted Youden's index (wJ) with 0�w� 1:

wJ ¼ (1-w)∙sensitivity þ (1þw)∙specificity – 1.

2.7.5. Disentangling intra-white matter and inter-tissue effects in T1-filtering
To test whether T1-filtering also removes false-positive candidates

that remain strictly within the white matter, or only those that traverse
the subcortical gray matter, we repeated the T1-filtering analysis, this
time removing any non-white matter voxels before calculating the T1
profiles. For this aim, white-matter voxels were defined using the Free-
Surfer white-matter mask, warped to diffusion space. See Supplementary
Text for a detailed description of this analysis.

2.7.6. T2w/T1w-filtering
The subsequent analysis pipeline of the HCP data was identical to that

used for the first dataset above, except that a T2w/T1w contrast image
was used instead of a quantitative T1 map.

2.7.7. T1-filtering in the presence of focal lesions
To test whether T1-filtering can be used in the presence of focal

white-matter lesions, we tested the method on a patient suffering from
multiple sclerosis. In this patient brain, the white-matter lesions were
automatically identified using FreeSurfer as hypointensities in the T1w
image. These were used to create a lesion mask, which was manually
edited based on the FLAIR image.

The T1-filtering pipeline for the patient was identical to that used for
the first dataset, with two changes. First, the white-matter mask used for
tractography included the lesioned regions as determined in the lesion
mask. Second, when calculating T1 profiles of the streamlines for T1-
filtering, we ignored voxels included in the lesion mask.
2.8. Anatomical measurements

To measure the distance between Meyer's loop and the temporal pole
(ML-TP), we segmented the temporal pole using FreeSurfer and non-
linearly warped it to the space of diffusion MRI data using ANTs. We
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manually identified the most anterior point in Meyer's loop in both the
OR benchmark and the T1-filtered OR. The ML-TP distance was calcu-
lated as the difference in the y-coordinate (anterior-posterior axis) be-
tween Meyer's loop and the most anterior point of the temporal pole ROI
as in (Lilja and Nilsson, 2015).

2.9. Code availability

All code for OR benchmarks creation and OR T1-filtering is publicly
available as open source Matlab code in GitHub https://github.com/
MezerLab/T1-filtering-OR.

3. Results

3.1. The OR has a distinct T1 signature

The OR is a highly myelinated white-matter pathway that can be
identified in postmortem brains using myelin staining (Fig. 1b; Bürgel
et al., 1999). T1 was shown to be highly sensitive to myelin content in
white matter. Indeed, the OR is readily identified in all subjects in our
data by a signature of low T1 values in multiple slices (Fig. 1c, Supple-
mentary Fig. 1).

To quantify the difference between the T1 of the OR and adjacent
white-matter tracts, we identified subject-specific OR bundles using
spatial inclusion and exclusion criteria (see Appendix B) that were vali-
dated by an expert neuro-ophthalmologist. The adjacent white-matter
tracts were automatically identified using the Mori atlas (Wakana
et al., 2004; Yeatman et al., 2012). We found that the mean T1 along the
core of the OR (mean� STD 831� 30ms) is significantly lower
compared with other white-matter tracts (F. Major: 853� 33ms, IFOF:
877� 25ms, ILF: 850� 26ms, UF: 957� 21ms; Fig. 2). These differ-
ences are statistically significant in a paired samples t-test with Bonfer-
roni correction (p< 2� 10�8 for all tracts). This includes both tracts that
follow the OR for a portion of its course (e.g., the IFOF and the ILF; Goga
and Türe, 2015), as well as tracts that cross in the vicinity of the OR (e.g.,
the UF; Kier et al., 2004).

3.2. The OR T1 profile in space

The typical T1 profile of the OR across the population shows lower T1
values (Fig. 3) compared with adjacent white-matter tracts (Supple-
mentary Fig. 2). This is particularly evident for the UF. Similarly, seg-
ments of the ILF and IFOF have T1 values that are higher compared with
the OR. At their posterior segments, however, as they share their course
with the OR (and the IFOF adjoins the OR to form the Sagittal Stratum
(Catani et al., 2003)), their T1 values are naturally very close to those of
the OR as they sample similar voxels. In addition, we calculated the T1
profile of the anterior sub-bundle of the OR, which includes Meyer's loop.
While the most anterior region showed relatively higher T1 values then
the full OR, it is still very close to the typical T1 of the entire OR (Fig. 3a,
inset).

3.3. Tractography filtering using T1 mapping

To test the hypothesis that quantitative T1 can provide useful
microstructural information for tractography optimization of the human
OR, we used the T1map to differentiate between valid (true positive) and
invalid (false positive) streamlines in 62 hemispheres (Figs. 4–6). Fig. 5a
shows the initial candidate set of the OR streamline tracked between
thalamus and V1. As expected, this candidate set suffers from low spec-
ificity and includes many false positive streamlines that deviate from the
true OR path, since minimal anatomical landmarks used for tractography
seeding (Benjamin et al., 2014; Martínez-heras et al., 2015).

The histology-based hypothesis predicts that true OR streamlines
have a consistent microstructural signature of low T1 values along their
path (high myelin, Fig. 1d, Supplementary Fig. 1). When plotting all

https://github.com/MezerLab/T1-filtering-OR
https://github.com/MezerLab/T1-filtering-OR


Fig. 3. T1 profile along the OR. (a) The dashed blue curves shows the mean T1 profile of the OR across the population (n¼ 31 subjects), progressing from posterior
to anterior (0–100), for the left and right hemispheres. The dark and light gray regions indicate the 25th-75th percentiles and 10th-90th percentiles, respectively. Insets
show the T1 profiles of the anterior sub-bundle of the OR (y-axis scaled down). Here, the black curve indicates the mean profile, and the dashed blue curve is the
corresponding mean profile of the entire OR, for reference. (b) An example subject showing the OR benchmark separated to its upper and anterior sub-bundles
(see Methods).
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candidate streamlines on the plane of median T1 (T1-Mdn) versus T1
standard deviation (T1-STD), we find great variability across streamlines
(Fig. 4a and Supplementary Fig. 3). Importantly, we find that the
benchmark OR streamlines (although constructed based purely on spatial
inclusion and exclusion criteria) are clustered at the bottom left corner of
this plane, indicating that they are characterized by low T1-Mdn and T1-
STD compared with the other, false-positive, candidate streamlines.
Furthermore the streamlines of other white-matter tracts, identified by
the Mori atlas (see Methods), are clustered at different positions in this
plane (Fig. 4b and Supplementary Fig. 4). This suggests that T1-Mdn and
T1-STD can serve to identify the true OR from false positive candidate
streamlines that “jump” to nearby pathways.

Next, we incorporated the histology-based OR T1 filter. Fig. 5 illus-
trates the T1-filtering process for one subject, in which we excluded
streamlines with either a highly variable T1 profile (high T1-STD) or with
a high value of median T1 along their path (high T1-Mdn). See Supple-
mentary Figs. 5-9 for the T1-filtering process in additional subjects. The
optimized set of streamlines appears to agree with the known neuro-
anatomy of the OR. Importantly, it includes the OR's most anterior part,
Meyer's loop, in 61 of 62 hemispheres (see additional examples in Sup-
plementary Figs. 5-9). Supplementary Fig. 7 shows the single unusual
hemisphere. We note that choosing a different pair of thresholds allows
the preservation of Meyer's loop in that case as well. Visual inspection of
Fig. 5 and Supplementary Figs. 5-9 verifies that the T1-filtering method
allows the elimination of several groups of false-positive streamlines.
Still, for this choice of filtering thresholds (T1-Mdn and T1-STD), some
false-positive streamlines persist, most commonly around the thalamus.

The complementary nature of using both T1-STD and T1-Mdn for
tractography filtering of the OR can be appreciated in Fig. 5b–c. We find
that when filtering by T1-STD exclusively, some false-positive stream-
lines persist (Fig. 5b), which can be further eliminated by setting an
upper threshold on T1-Mdn (Fig. 5e, Supplementary Figs. 5-9).

3.4. Sensitivity-specificity tradeoff across different filtering approaches

Next, we studied the sensitivity-specificity tradeoff of the T1-filtering
approach, and compared it with other filtering techniques (Caiafa and
Pestilli, 2017; Sherbondy et al., 2008a). We quantify it at the group level
using a receiver operator characteristic (ROC) curve analysis. In calcu-
lating the sensitivity and specificity values, we used an
anatomically-based OR benchmark as a subject-specific gold standard.
The ROC curve is constructed by varying the filtering threshold: each
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threshold results in a different subset of streamlines, whose sensitivity
and specificity values correspond to a particular point in the ROC curve.
Fig. 6a illustrates two hypothetical schematic ROC curves. A good
filteringmethod is one whose ROC curve passes close to the optimal point
at the top left corner. Its area under the curve (AUC) and maximal
Youden index along the curve, Jmax, would be that which is closest to
their maximal possible values of 1.

The proposed T1-filtering technique (Fig. 5) requires two user-
specified thresholds (on T1-STD and T1-Mdn), expressed as percentiles
across streamlines (see Methods). In Fig. 6 we plot the result of an
extensive search in this parameter space for each subject. We plot the
mean smoothed ROC curves across all 62 hemispheres using three trac-
tography filtering methods based on a quantitative T1 map (T1-Mdn, T1-
STD and the two filters together; see Supplementary Fig. 10 for ROC
curves of all the individual subjects in this dataset). The performance of
T1-STD-filtering and T1-Mdn-filtering is very similar in terms of speci-
ficity and sensitivity as indicated by their similar ROC curves. Both
curves exceed 0.8 sensitivity at the cost of approximately 0.2 loss in
specificity. The best results are obtained using a combined filtering
approach based on both T1-STD and T1-Mdn. The combined T1-filtering
outperforms T1-STD-filtering and T1-Mdn-filtering in terms of both AUC
(mean� STD 0.93� 0.02 compared to 0.88� 0.05 and 0.86� 0.03
respectively) and Jmax (0.73 � 0.06 compared to 0.65 þ 0.09 and
0.58� 0.07 respectively). These differences are statistically significant in
a paired samples t-test with Bonferroni correction for both AUC (T1-STD-
filtering: t61¼ 10 p¼ 2.1� 10�14; T1-Mdn-filtering: t61¼ 17.4
p¼ 2.7� 10�25, n¼ 62 hemispheres) and Jmax (T1-STD-filtering:
t61¼ 9.1 p¼ 5.9� 10�13; T1-Mdn-filtering: t61¼ 19 p¼ 2.6� 10�27,
n¼ 62 hemispheres). These results indicate that the T1 map holds
valuable information that is useful for minimizing the sensitivity-
specificity tradeoff in tractography of the human OR.

Next, we tested the possibility of using a single fixed pair of thresholds
(percentiles) common to all subjects. For this analysis we selected the
pair of thresholds that gave the greatest Jmax on average across subjects
([35, 67] percentiles for T1-STD and T1-Mdn respectively). We found
that these fixed thresholds gave an average Jmax of 0.64. Compared with
the extensive search for an optimal pair of thresholds per subject, the
fixed thresholds common to all subjects lead to an average decrease of
only 0.09 in Jmax. Based on a qualitative subjective assessment of the T1-
filtered streamlines, we found that maximizing the weighted J values
(wJ) with w¼ 0.3 is advantageous, as it eliminates more false-positive
streamlines while preserving the expected shape of the OR, even



Fig. 4. T1-STD and T1-Mdn of the OR and adjacent tracts. (a) T1-STD and
T1-Mdn of the OR candidate streamlines and the OR benchmark. Circles marks
the positions of each streamline in the plane of T1-STD and T1-Mdn for one
representative subject. As expected by the myelin-based hypothesis for the T1
signature of the OR, streamline of the OR benchmark (blue) are generally
characterized by low values of T1-STD and T1-Mdn compared with the rest of
the candidate streamlines (gray). (b) The typical T1-STD and T1-Mdn of the OR
benchmark and adjacent white-matter tracts. Data represented as mean� STD
per axis. See all subjects in Supplementary Figs. 3-4.
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though its false negative rate is naturally increased compared with Jmax

(Fig. 5; Supplementary Figs. 5-9).
Last, the distances between Meyer's loop and the temporal pole (ML-

TP) were very similar for the benchmark OR (27.4� 3.6mm) and the T1-
filtered OR (27.4� 3.4mm). No significant difference was found in a
paired samples t-test (t61¼ 0.05 p¼ 0.96, n¼ 62 hemispheres). These
values also agree with previous literature based on postmortem dissec-
tions (Ebeling and Reulen, 1988; Lilja et al., 2014).
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3.5. Comparing T1-filtering with diffusion-based tractography filtering

We compared the T1-filtering approach with tractography filtering
based on the diffusion MRI signal. First, we applied the ConTrack scoring
algorithm commonly used for tractography filtering of the OR. In Con-
Track, a streamline is assigned a high score if its local orientation fits well
the diffusion data, and if it complies with prior assumptions regarding
streamline length and smoothness. The ROC curves in Fig. 6b show that
the information extracted from the T1 map is complementary to the
diffusion data used by ConTrack's diffusion-filtering. The mean ROC
curve across all hemispheres for the combined T1-filtering approach is
closer to optimal compared with ConTrack's mean ROC curve (Fig. 6c–d).
This discrepancy between T1-filtering and ConTrack is further quantified
by the statistically significant difference in AUC (mean� STD
0.93� 0.02 and 0.75� 0.05 respectively; t61¼ 24 p¼ 8.9� 10�33,
paired samples t-test with Bonferroni correction, n¼ 62 hemispheres)
and Jmax (0.73� 0.06 and 0.38� 0.08 respectively; t61¼ 25
p¼ 6.9� 10�34).

Then we compared the T1-filtering method with a state-of-the-art
global tractography method based on diffusion MRI data, implemented
by the linear fascicle evaluation (LiFE) algorithm (Pestilli et al., 2014). As
expected, the LiFE-optimized tractogram included 10 � 1%
(mean þ STD) of the streamlines in the input tractogram. LiFE success-
fully eliminated many of the false-positive streamlines (see Supplemen-
tary Fig. 11), but it also eliminated many streamlines considered as true
OR streamlines according to our benchmark, leaving a sparse represen-
tation of the full tract. To visualize the sensitivity-specificity tradeoff in
the LiFE-filtering optimized results, each hemisphere is shown as a
separate point in the plane of sensitivity versus 1-specificity (Fig. 6b). We
found an advantage of T1-filtering over LiFE-filtering for the OR, with a
significant difference in Jmax (0.73�0.06 and 0.24� 0.06 respectively).

3.6. Disentangling intra-white matter and inter-tissue effects in T1-filtering

It was previously highlighted that including subcortical regions in the
tractography propagation mask is essential to fully reconstruct the white-
matter pathways (Girard et al., 2014; Li et al., 2012; Smith et al., 2012).
While this increases the sensitivity of tractography results by reducing
the occurrence of false-negative streamlines, it also introduces
false-positive streamlines that traverse subcortical gray matter. We thus
tested whether T1-filtering also removes false-positive candidates that
remain strictly within the white matter, and not only those that traverse
the subcortical gray matter. In the Supplementary Text and Supplemen-
tary Fig. 12 we show that indeed, T1-filtering eliminates both types of
false-positive streamlines.

To conclude, our results indicate that integrating information from
the T1 profiles of candidate OR streamlines can be used to differentiate
between false positive and true positive results. By filtering the candidate
set using two profile statistics, T1-STD and T1-Mdn, one can obtain an
optimized OR streamline subset with high sensitivity while retaining a
high level of specificity.

3.7. Generalizing tractography filtering using semi-quantitative MR images

We tested whether the OR T1-filtering approach could be generalized
to non-quantitative weighted MRI, which is more widely used. Here we
used a T2w/T1w image that was proposed to be sensitive to myelin
content (Glasser and Van Essen, 2011). In this contrast image, as in the
quantitative T1 map, the OR stands out as a dark region where expected
(Fig. 7a).

Visual inspection of the filtered subset indicates that the STD and
median values of the T2w/T1w profile are useful for filtering the
candidate OR streamlines (Fig. 7a). An ROC curve analysis comparing
T2w/T1w-filtering with the diffusion-based ConTrack filtering, shows
that a better sensitivity-specificity tradeoff is achieved by the T2w/T1w-
filtering (Fig. 7b). A significant difference between the T2w/T1w-



Fig. 5. T1-filtering of the optic radiation (OR) in one subject. (a) The candidate set of streamlines connecting the thalamus with area V1 includes many spurious
streamlines. When colored by their T1-STD values (b), it is evident that many spurious streamlines have high T1-STD values. (c) The remaining subset of streamlines
(in this example, thresholds were chosen by maximizing the wJ value in the ROC analysis, with w¼ 0.3; See Methods and Fig. 6). Many spurious streamlines have been
eliminated. When colored by their T1-Mdn values (d), some spurious streamlines with high T1-Mdn values are apparent. (e) The final T1-filtered subset clearly
resembles the benchmark OR in this subject, shown in panel (f). See additional subjects in Supplementary Figs. 5-9.
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filtering and ConTrack-filtering was found also in terms of AUC of the
ROC curve (0.84� 0.04 and 0.77� 0.05 respectively; t59¼ 8.2
p¼ 2.4� 10�11, paired samples t-test, n¼ 60 hemispheres), and Jmax
values (0.54 � 0.09, 0.42 þ 0.08- respectively; t59¼ 9.0 p¼ 1.2� 10�12,
paired samples t-test, n¼ 60 hemispheres). These results verify that
conventional, non-quantitative MR images that are sensitive to myelin
content, such as T2w/T1w images, can be used for tractography filtering
of the human OR. We note that the benefit of using T2w/T1w-filtering
over the diffusion-based ConTrack-filtering was smaller than in the
case of fully quantitative T1 mapping.
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3.8. T1-filtering in the presence of focal lesions (MS)

We tested whether T1-filtering can be done on a subject presenting
focal lesions due to multiple sclerosis. A lesion in the OR can be clearly
seen in the subject's T1w image, as well as in the T1 profile along the core
of the OR benchmark (Fig. 8a–b). The T1 profile outside the lesioned area
falls within the population norm. Fig. 8c shows that by ignoring the
lesioned voxels, we were able to use T1-filtering and obtain an optimized
subset of streamlines that represent the OR, even in the presence of focal
lesions.



Fig. 6. ROC analysis of the different filtering techniques in the OR. (a) Illustration of two hypothetical ROC curves. Each curve represents one classification
method, and each point along the curve represents the sensitivity and specificity given a specific threshold. The gray curve is characterized by poor sensitivity-
specificity tradeoff. The black curve reaches close to the top left point, where maximal sensitivity and specificity are obtained. The red star marks the point of
maximal Youden index (Jmax¼ 0.89) for that curve. (b) The mean ROC curves (across 62 hemispheres) calculated voxelwise for each method. The combined T1-
filtering uses both the standard deviation and median T1 along streamlines (T1-STD-Mdn, purple) and reaches closest to the optimal point, indicating that the T1
map holds valuable information for tractography filtering of the OR. Filtering only by the streamlines' median T1 values (T1-Mdn, orange) or only by their T1 standard
deviation (T1-STD, yellow) gave suboptimal results. The diffusion-based filtering approach (ConTrack (Sherbondy et al., 2008a), blue) reached lower values. Gray
circles represent the streamlines subsets obtained with LiFE (Pestilli et al., 2014), a diffusion-based global filtering approach. (c-d) Boxplots indicating the area under
the curve (AUC) and the maximal Youden index (Jmax) obtained by each tractography filtering method. Center lines indicate median values; notch indicates 95%
confidence interval for the median; box limits indicate the interquartile range (IQR); whiskers extend to the most extreme data points within 1.5 � IQR outside the box;
outliers are represented as red crosses; n¼ 62 sample points. In both summary statistics shown in panels (c) and (d), the combined T1-filtering technique (purple)
obtains the highest values. See ROC curves of individual subjects in Supplementary Fig. 10.
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4. Discussion

In this study, we provide substantial evidence for the recently pro-
posed hypothesis that multi-modal MRI can help resolve the ambiguities
that challenge current tractography algorithms (Jbabdi and
Johansen-Berg, 2011; Maier-Hein et al., 2017; Wandell, 2016). Specif-
ically, we introduce a tractography filtering framework that integrates
quantitative T1 mapping to optimize the tractography results of the
human optic radiation (OR).We show that the consistency in T1, which is
sensitive to myelin content, is highly valuable for complementing the
geometrical information extracted from diffusion MRI of the OR. We
found that the T1-filtering outperforms two diffusion-based filtering
approaches for the OR. The false-positive streamlines produced by
diffusion MRI tractography of the OR can be eliminated based on their
myelin sensitive T1 profile, thereby increasing tractography's specificity,
while maintaining a high level of sensitivity.

In particular, these results also support the assumption of spatial
smoothness of microstructural properties along white-matter fascicles,
which is often implicitly made by microstructure informed tractography
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algorithms (Daducci et al., 2016).
Accurate in vivo delineation of the OR has important clinical implica-

tions. Tracking the OR has great importance for presurgical planning in
neurological resections of the anterior temporal lobe, in which avoiding
damage to the OR is essential for fully preserving the patient's visual field
(Ebeling and Reulen, 1988; Sarubbo et al., 2015; Winston et al., 2014;
Yogarajah et al., 2009). As an indispensable signal-relaying station in the
human visual system, the OR is frequently implicated in a variety of dis-
eases, such as multiple sclerosis (Reich et al., 2009), cerebral palsy (Hoon
et al., 2009; Rushe et al., 2010), glaucoma (Kaushik et al., 2014), amblyopia
(Duan et al., 2015; Xie et al., 2007) and others (Ogawa et al., 2014).
Different tractography algorithms can yield different results (Bastiani et al.,
2012; Jbabdi et al., 2015; Takemura et al., 2016), often characterized by a
sensitivity-specificity tradeoff: while probabilistic tractography algorithms
allow trackingmore valid streamlines (increasing the sensitivity), this often
comes at the cost of identifying more invalid streamlines (decreasing the
specificity) (Zalesky et al., 2016). This tradeoff can be traced back to the
ambiguity of the underlying diffusion signal (Mangin et al., 2002; Thomas
et al., 2014). For example, Meyer's loop, the highly angulated anterior



Fig. 7. Tractography filtering using a T2w/T1w image in the HCP dataset. (a) A T2w/T1w image of the white matter overlaid on top of a T1w image. As in the
case of a quantitative T1 map, the highly myelinated OR has a unique signature compared to surrounding tissue (black arrow; compare with Fig. 1c). (b) The mean
ROC curves (n¼ 60 hemispheres) obtained by the combined T2w/T1w-filtering (purple), and by the ConTrack diffusion-based filtering (blue). There is added value in
using the semi-quantitative T2w/T1w image over using the diffusion data alone.
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portion of theOR, is a bottleneck for tractography (Maier-Hein et al., 2017).
In this region, the tractography algorithm generates spurious streamlines
that “jump” between disparate white-matter tracts. Previous studies elimi-
nated such spurious streamlines by incorporating spatial and anatomical
constraints (Benjamin et al., 2014; Dayan et al., 2015;Martínez-heras et al.,
2015; Portegies et al., 2015; Renauld et al., 2016; Stieglitz et al., 2011). In
postmortem studies, the OR is identified by its consistently high myelin
content (Bürgel et al., 2006, 1999; Ferguson, 1905). We have shown that
thismyelin signature is reflectedbyconsistently lowvalues in a quantitative
T1 map (Fig. 1c; Supplementary Fig. 1), which differ from adjacent white
matter. Based on these observations, we developed an in vivomyelin-based
T1-filtering technique, and showed that the spatially consistent micro-
structural signatureof theOR fascicles can serveasa regularizationcriterion
for tractography, thereby eliminatingmost of the false positive streamlines.
We found that T1-filtering can eliminate both intra-white matter and
inter-tissue false-positive streamlines. We further demonstrated its appli-
cation in the presence of focal white-matter lesions (Fig. 8). Like all trac-
tography filtering methods, T1-filtering can only eliminate existing
streamlines, but not create new ones. Therefore, the candidate set of
streamlinemust cover the full extent of the reconstructed tract (e.g.,Meyer's
loop). Eliminating the false positives is particularly important for probabi-
listic tractography algorithms, which are designed to provide minimal
false-negative results (Thomas et al., 2014; Zalesky et al., 2016). To the best
of our knowledge, the present work is the first to use the streamlines T1
profiles for tractography evaluation and optimization (Fig. 5; Supplemen-
tary Figs. 5-9).

While the proposed T1-filtering method works well for the OR, it is
probably not immediately applicable to otherwhite-matter tracts, since the
OR presents a unique case of pronounced difference in myelin content
compared with other white-matter tracts. Generalizing such multi-modal
microstructure informed tractography to whole-brain mapping will likely
require a global optimization approach, where the full tractogram is used
to simultaneously account for multiple microstructural measures along the
tractography streamlines (Caiafa and Pestilli, 2017; Daducci et al., 2015).
Developing such a global multi-modal approach could open new avenues
in the characterization of white matter in the human brain. Furthermore,
while we have demonstrated successful application of T1-filtering in a case
of focal white-matter lesions, it is likely to fail in the clinical cases of diffuse
lesions which affect the T1 signature throughout the OR. In this work we
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have not tested if the filtering algorithm performs similarly for T2w/T1w
in the presence of white-matter lesions. It remains to be tested how
T1-filtering of the OR performs for different age groups, since the T1 sig-
natures of different white-matter pathways are known to change during
the course of normal development and aging (Yeatman et al., 2014). A
limitation of any in vivo study of the OR is the lack of ground truth
delineation of the pathway. Here we developed an automatic procedure
based on known anatomical landmarks to identify a gold standard OR.
While we have found no significant difference in the ML-TP distance be-
tween the OR benchmark and the T1-fltered OR, the lack of ground truth
renders it hard to determine the accuracy of the ML reconstruction. In fact,
recent endeavors to determine the precise location of the ML in postmor-
tem dissections concluded that “even applying the most proficient fiber
microdissection, the tip of the temporal loop could not be accurately
delineated” (Goga and Türe, 2015). Last, the OR travels in part parallel to
other white-matter tracts. In particular, it passes parallel to the ILF, and
joins the IFOF and the F.Major to form the Sagittal Stratum, making it hard
to physically distinguish between them (Catani et al., 2003). It is possible
that future high-resolution images and different qMRI parameters will
provide additional segmentation power in these regions.

While quantitative MRI methods have become more widely used, they
are still not used routinely in research and clinical settings, mostly due to
long acquisition times. Furthermore, quantitative T1 mapping is chal-
lenging as it must account for instrumental biases and confounds (Bou-
dreau et al., 2017; Curnes et al., 1988). We used a sample of the HCP
dataset to demonstrate the ability to optimize the OR tractography results
using semi-quantitative MRI. This supports previous studies reporting that
the OR is characterized by an increased signal intensity on T1-weighted
images and decreased signal intensity on T2-weighted images (Jolesz
et al., 1987; Kitajima et al., 1996). This generalizes the applicability of the
OR multimodal tractography filtering approach to published datasets, and
suggests that it might also be applicable in clinical settings where quan-
titative MRI measurements are still not commonly available. Nevertheless,
we stress that our results are based on data acquired at 3T. As both T1 and
T2, as well as their corresponding weighted images, depend on field
strength (De Graaf et al., 2006; Stanisz et al., 2005), one should verify that
sufficient contrast exists between the OR and adjacent white matter when
applying the filtering algorithm at different field strengths.

To conclude, methods for microstructure informed tractography aim



Fig. 8. T1-filtering in the presence of focal white-
matter lesions. (a) T1-weighted axial and sagittal images
of the individual with multiple sclerosis. White arrowheads
show the same lesion along the OR, near the left lateral
ventricle. White arrows indicate two other lesions. (b) T1
profiles of the individual with multiple sclerosis (purple)
compared with the distribution of measurements from the
healthy controls. The lesion is reflected by high T1 values
(white arrowhead). (c) By ignoring the lesioned voxels
when calculating T1-STD and T1-Mdn per streamline, T1-
filtering can be applied to the candidate streamline set
(left), to obtain a T1-filtered subset (middle) which re-
sembles the OR benchmark (right) in this subject.
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at complementing the geometrical aspect of tractography with bio-
physically meaningful parameters (Daducci et al., 2016, 2015; Girard
et al., 2016; Sherbondy et al., 2010, 2008a; Smith et al., 2015) (see
Daducci (2016) for review). Such methods, currently based only on
diffusion MRI, aim to optimize the accuracy of tractography results,
while giving a more complete characterization of white-matter tracts in
terms of their microstructural properties (Daducci et al., 2015; Pestilli
et al., 2014; Smith et al., 2015). Our findings provide evidence that T1
tract profiles contain valuable microstructural information for opti-
mizing the tractography results in the OR. Importantly, microstructural
informed tractography algorithms implicitly assume smoothness in the
microstructural signature along white-matter tracts (Daducci et al.,
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2016). Our results show that in the case of T1 along the OR, this
assumption is valid and constructive. We expect that integrative
multi-modal approaches for tractography evaluation will become more
widely used (Daducci et al., 2016; Wandell, 2016) as more rapid and
accurate qMRI methods are developed (Cohen and Polimeni, 2018; Ma
et al., 2013) and new acquisition schemes for simultaneously collecting
diffusion and relaxometry data are proposed (Benjamini and Basser,
2016; De Santis et al., 2016; Tax et al., 2017).
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Appendix B. OR benchmark creation

The validation of any tractography method is difficult due to a lack of ground-truth data regarding the exact spatial extent of the underlying white-
matter tracts. Therefore, in order to assess the validity of each tractography-filtering method used in this work, we developed an automated procedure
for creating subject-specific benchmark OR bundles. The OR benchmark is a subset of the candidate OR set, but unlike the T1-filtered subset which is the
focus of this work, it is filtered using spatial inclusion and exclusion criteria rather than microstructural ones. The benchmark generation process
comprises of the following steps (see https://github.com/MezerLab/T1-filtering-OR):

1) Generate 100,000 candidate OR streamlines using ConTrack’s probabilistic tractography algorithm, as described in the Methods section. All
candidate OR streamlines have endpoints within the thalamus and V1 ROIs.

2) Include only streamlines with endpoints at the LGN. An inclusive LGN is automatically defined based on the thalamus ROI extracted from FreeSurfer:
it is defined as a sphere with radius 4 mm, whose center is located at the thalamus’ 20% most posterior coordinates, 20% most lateral coordinates,
and 10% most inferior coordinates.

3) Eliminate all streamlines crossing the corpus callosum to the contralateral hemisphere.
4) Eliminate all streamlines reaching more than 30 mm inferior of the LGN. Such spurious streamlines often go through the pons and should be

discarded.
5) Eliminate streamlines mixing with the callosum Forceps Major. Such spurious streamlines are very common in tractography of the OR. Here we

eliminate them using the following 1D histogram classification (Fig. 9):
5a For every streamline, identify only coordinates extending 20 mm posterior of the LGN, and up to 50% of the total length of the streamline, i.e.,

before the OR diverges towards its cortical endpoints (Fig. 9, yellow region).
5b Divide the selected coordinates to 6 evenly spaced bins along the anterior-posterior axis
5c Select the bin whose distribution of coordinates in the medial-lateral axis is widest (i.e., greatest STD in the x coordinate. Fig. 9, white arrows).
5d Calculate the minimal-x coordinate of each streamline within the selected bin (Fig. 9).
5e To classify streamlines as belonging to splenium or OR calculate a histogram of these x coordinates. Identify the boundary between the OR and

the splenium as the longest consecutive region with no streamlines along the histogram x-axis (Fig. 9). Keep only the lateral OR streamlines.
6) Eliminate any gross outliers using the standard cleaning procedure of AFQ (Yeatman et al., 2012). Specifically, use a permissive threshold to discard

any streamlines whose length is more than 4 standard deviations above the mean streamline length.
Fig. 9. Histogram classification for eliminating the spurious splenium streamlines. Only the segment of the streamlines posterior to the LGN, and up to 50% of
the total streamline length are considered (yellow). This segment is divided to 6 bins along the posterior-anterior axis (y). The bin with the widest distribution in the

https://doi.org/10.1016/j.neuroimage.2018.06.060
https://github.com/MezerLab/T1-filtering-OR
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lateral-medial (x) axis is used for classification. In this bin, a histogram of the minimal-x coordinates is calculated. Dashed lines mark the range of x values used in the
histogram plot. This histogram is typically bi-modal, reflecting the fact that the lateral ventricle separates the medial splenium from the lateral OR. Only streamline in
the lateral group are retained in the final benchmark.

See Fig. 5d and Supplementary Figs. 5-9 for examples of the resulting OR benchmark.
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